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ABSTRACT

We reframe the analysis of progress in Al by incorporating into an overall framework both the
task performance of a system, and the time and resource costs incurred in the development and
deployment of the system. These costs include: data, expert knowledge, human oversight, software
resources, computing cycles, hardware and network facilities, and (what kind of) time. These costs are
distributed over the life cycle of the system, and may place differing demands on different developers
and users. The multidimensional performance and cost space we present can be collapsed to a single
utility metric that measures the value of the system for different stakeholders. Even without a single
utility function, Al advances can be generically assessed by whether they expand the Pareto surface.
We label these types of costs as neglected dimensions of Al progress, and explore them using four
case studies: Alpha* (Go, Chess, and other board games), ALE (Atari games), ImageNet (Image
classification) and Virtual Personal Assistants (Siri, Alexa, Cortana, and Google Assistant). This
broader model of progress in Al will lead to novel ways of estimating the potential societal use and
impact of an Al system, and the establishment of milestones for future progress.

Keywords Atrtificial Intelligence - Evaluation - Al Costs - Al resources - Al progress

1 Introduction

The impact a new technology has on society depends on many factors and interests, but it is undeniably and ultimately
linked to how powerful and versatile the technology is. This is a two-way association, as measuring the actual progress
of a technology depends on how transformative it is for society. Al is no different. In this paper we argue that we need a
more thorough account of the elements that (1) play a major role on how efficient it is to deploy a new Al technology or
(2) imply some unaccounted costs on the Al life cycle or on society as a whole.

The prevailing approach to assessing Al progress consists of measuring performance, such as the raw or normalized
score in a game, ELO rating, error rate, accuracy, and so forth. All these measures are often plotted over time to
evaluate temporal progress [Eckersley and Yomna| [2017]],|Shoham et al.|[2017]. Performance, however, does not exactly
correspond with social value or scientific progress in Al. Misalignment between what is measured and what is desired
can lead to misallocation of energy and resources. Specifically, excessive effort is likely to go towards achieving novel
performance milestones Martinez-Plumed et al.| [2021a], and insufficient effort towards progress on other dimensions
relevant to social value, economic value, and scientific progress, such as compute efficiency, data efficiency, novelty,
replicability, autonomy, and generality.
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This does not mean that quantitative assessment through benchmarking should be abandoned [Martinez-Plumed and
Hernandez-Orallo| [2016]], Martinez-Plumed et al.|[2016]],[Martinez-Plumed and Hernandez-Orallo| [2018|], Martinez{
Plumed et al.| [2019]], Hernandez-Orallo et al.|[2022]], Martinez-Plumed et al.|[2022]]. On the contrary, we need more
and better measurement |Hernandez-Orallo| [2017al], Hernandez-Orallo et al.| [2021]]: measurement which is more
comprehensive, general, and focused on the cost function of the ultimate beneficiaries. Ultimately we would like to
weight all the resources that users (or receivers) of a technology require to achieve their goals. For instance, to what
extent does progress on a particular metric of performance in machine translation map on to user’s satisfaction? Does
the progress also correspond to a reduction in cost per translation, or in time for execution? If a paper develops a new
technique, how easily can this be brought from the laboratory to a generally impactful application?

In general, users seek the benefits of high performance (at a set of tasks), while they seek to minimize the costs of
developing and deploying their system. Sensitivity to costs is true for individual consumers, firms and developers, as
well as other scientists. Some kinds of hidden costs can appear during development, when an application is produced,
when reproduced at a large scale, or when adapted to other domains. Some future costs will be borne by future
developers or scientists, sometimes referred to as “technical debt” or “research debt”. Other costs may be spread
more broadly, and are thus harder to account for. As in other sectors, there are externalities from Al development and
deployment which are important to be aware of; among the negative externalities are environmental footprints, user
privacy, skill atrophy (e.g., the Google effect), opacity in decision making, etc. Attention to, and ideally measurement
of the possible impact of these side effects is beneficial, as it is a first step towards internalizing them.

In this paper we consider this wide range of costs. We will identify how costs are distributed depending on the stage in
which they are incurred, the number of times they are replicated, and the actor covering each cost. These dimensions
should be integral to the measurement of Al progress, even if their measurement is not always straightforward. As an
illustration of these difficulties and how they can be overcome, we will analyze several case studies where we evaluate
performance alongside these other dimensions. As a result, we overhaul the notion of progress in these domains.

Our paper makes several contributions. First, we offer the most detailed and formal analysis to date of the dimensions
of Al progress. While previous work has attempted to quantify progress in the performance of a specific system, we
more fully account for the resources required and the generality of solutions. Second, in so doing we surface neglected
dimensions of Al progress that may be optimized more directly. Third, we offer a novel framing under Pareto optimality
for assessing performance and costs of an Al system, which suggests a more principled approach to forecasting the
impact of future developments in Al, with myriad applications for policy, ethical, and economic analysis, and better
research portfolio optimization within the field of Al itself.

2 Background

Many benchmarks and competitions are used in Al but they vary in how representative they are of the fundamental
problems in their respective subfields Hernandez-Orallo| [2017b]], Hernandez-Orallo et al.| [2017]]. As a reaction,
challenges in Al are realigned to see if they can better capture the potential impact on automation |[Frey and Osborne
[2017], Brynjolfsson and Mitchell|[2017]],/Aghion et al.|[2017]], Korinek and Stiglitz|[2017]], or the aspiration of more
human-like Al Lake et al.|[2017]], Marcus| [2018]]. A deeper concern is that most benchmarks are not really fostering
the basic scientific advances needed to move the field forward, be they theoretical advances, explanatory insights, or
tools to facilitate other work. This issue of non-representativeness is partly addressed through the review process, and
requirements such as controlling the percentage of papers in different areas|Shah et al.|[2017].

A second issue, specialization, is related to representativeness. When a benchmark or competition becomes the target,
researchers will have incentives to overly specialize their systems to performance on that benchmark, at the cost of other
features of their system, such as generalizability. If we had a satisfactory metric of generality then we could use that as
a benchmark measure, but it remains an open question how best to operationalize generality Hernandez-Orallo| [2017a],
balancing between putting all the distribution mass possibly falling on a few tasks Legg and Hutter| [2007]—and not
really being general—or distributing it in a block-uniform way—facing the no free lunch theorems Wolpert|[2012].

A third issue is reproducibility, and the wider notion of replicability. In Al this was usually understood as requiring the
sharing of data and code, but the concept is becoming richer Drummond|[2009], Bonsignorio and Del Pobil| [2015]],
Henderson et al.| [2017]. Indeed, we must distinguish between specifically reproducing the results, and replicating the
findings with some variations|Zwaan et al.[[2017]]. Several initiatives have been proposed to facilitate (or even require)
a wider replicability. For instance, with the “open leaderboards * “ [Spohrer] [2017]], participants have to upload their
code so that other participants can make modifications and submit another proposal.

Finally, users are generally sensitive to the effort of developing and deploying an Al system, which performance
benchmarks rarely take into account. Much Al progress is attributed to advances in computational power Reagen
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et al.[[2017],[Hwang| [2018]]. However, it is not straightforward to quantify what exactly can be attributed to software
progress, hardware progress or several other resources |Brundage| [2016], (Grace| [2017]]. Accordingly, perhaps it is
more effective to just measure the so-called “end-to-end performance”, including computational time and quality of
the models, such as the recent DAWNBench|Coleman et al.|[2017]] for deep learning, or MLPerf MLPerf [2018]] for
a variety of Al models and (hardware) chips . Other resources, such as data, are at least as important, especially in
machine learnin But it seems subjective to determine what input is seen positively or negatively, or even considered
as cheating: too much data (versus better algorithms), too much knowledge (constraints, rules or bias), enriched input
Bougie and Ichise [2017]], etc. The question depends mostly on the cost of the resource. Human resources (“human
computation”) are also common in Al to increase performance or generality (but at the cost of autonomy).

Overall, there are many resources involved but, at the moment, there is no integrated framework taking into account
all of them. Related approaches involve the ideas of utility functions, Pareto-optimal analysis and, most especially,
cost-sensitive learning [Elkan| [2001]]. Turney|(2002) identifies costs related to inputs and outputs in classification (errors,
instability, attributes, labeling, actioning) data (cases), computation and human preprocessing. In this paper, we offer a
general statement of this idea, applied to Al progress.

In the end, when assessing Al progress in a comprehensive way, one should consider the whole life cycle of research,
innovation, production, and reproduction. Notions such as technical or research debt are becoming more recognized,
as they incorporate some costs that are not perceived at early stages of the process but have an impact later on, when
the technology or product is put into practice [Sculley et al.|[2015]], Henderson et al.|[2017], Olah and Carter| [2017]],
Desislavov et al.|[2021]].

3 Components and integration

We now flesh out a comprehensive list of dimensions that are required for an “Al system” to work. We use the term
“system” in a flexible way, including an agent, an algorithm, a product, etc., proposed in a research paper or by a
company.

Given the fuzzy contours of Al Martinez-Plumed et al.|[2018]], one relevant way of assessing the impact of Al technology
is through the potential for “automation” Frey and Osborne| [2017]], Brynjolfsson and Mitchell [2017]], |/Aghion et al.
[2017]], Korinek and Stiglitz [2017]], Martinez-Plumed et al.| [2020a], [Tolan et al.| [2021]]. However, some of these
studies are usually assuming conditions such as ““at a reasonable cost”, “to a high degree of automation”, etc., versus
“full automation at whatever cost”. The estimated probability of automation for a given task might change completely
depending on these conditions. In the end, automation is important, but it is the efficiency of the whole system what
matters to assess its potential impact, including any “human computation” involved. This view of efficiency links us
directly to the resources involved in an Al system.

Table [T] shows the resources we identified as frequently involved in developing and deploying Al systems. These
resources have fuzzy boundaries and are often fungible with each other. For instance, the distinction between data and
knowledge is not always clear, and hardware and software may be highly intertwined. Human resources are typically
considered under “manipulation”, but can appear in other resources (e.g., labeled data and teaching a robot might be
assigned to r4 and 7, respectively). Similarly, r; represents calendar time, which cannot be accelerated by putting
more human resources, as we have to wait for some events to happen—unless we use simulations or historical data
from other domains. The existence of these fuzzy boundaries is not a problem, as long as all the resources are identified.

For some dimensions, we can find methods to evaluate their cost. For instance, software effort can be evaluated using
analogy-based, WBS-based or size-based estimation models [Putnam)| [[1978]], Sommerville| [2015]. In the hardware
category, some models consider both the equipment used for the development and deployment of the system to more
complex hardware cost estimation methods, models and tools [Ragan et al.|[2002]. Similarly, compute can be estimated
using mathematical (simulation) models such as in MathWorks| [2018]]. In some other cases, these ingredients can
be grounded to economic terms Veryard, [2014]], or linked to the concept of “value proposition”, what a company or
product actually delivers to its customers or society |Anderson et al.|[2006].

The ultimate criterion for identifying the resources is that they must incur costs during the development or deployment
of an Al system. There are other dimensions that are not necessarily seen as increasing the overall costs, such as
fairness, privacy and transparency. Because they have more to do with trust in Al or several ethical issues, they are
not included in Table[T] Also, they are less neglected nowadays than they were a few years ago [Friedler and Wilson
[2018], [fat| [2019]l, [Fernando et al.| [2021]. In any case, separately or jointly with those in the table, fairness, privacy and
transparency could be considered as well when analyzing some particular technologies (especially machine learning),
as they can have an impact on their applicability, if some constraints or regulations are not met, or must be traded off

’See https://sites.google.com/site/dataefficientml/bibliography for a bibliography on data-efficient ML.
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Description Example

rq  Data: All kinds of data (unsupervised, supervised, A self-driving car needs online traffic information.
queries, measurements).

T Knowledge: Rules, constraints, bias, utility A spam filter requires the cost matrix from the
functions, etc., that are required. user.

rs  Software: Main algorithm, associated libraries, A planner uses a SAT solver over a complex
operating system, etc. ecosystem of libraries.

rn, ~ Hardware: Computer hardware, sensors, A drone may need a 3D radar for operation,
actuators, motors, batteries, etc. instead of a camera.

Tyn  Manipulation: Manual (human-operated) A robot needs to be manually re-calibrated or
intervention through assistance overseen real-time.

r.  Computation: Computational resources (CPU, A (vanilla) nearest neighbor classifier computes
GPU usage) of all the components all distances.

rn  Network: Communication resources (Internet, A delivery system needs online connectivity for all
swarm synchronisation, distribution). drones.

Tt Time: Calendar (physical) time needed: A digital assistant requires cyclical data (weeks) to
waiting/night times, iteration cycles. find patterns.

TI Load: Volume, size or dimension of the solution A specific DNN (GoogLeNet) trained on
(Iength of the parameter vector in a DNN, model =~ CIFARI10 using 8 layers requires 7M parameters
size in units of bytes, memory usage, etc.) and 40MB of storage.

Te  Energy: Power consumption per unit of time A personal assistant (PA) has a peak power

required to build or operate.

consumption of 2.20W when keyword spotting
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and 0.4W when idle.

Table 1: Resources that are frequently needed by Al systems.

with performance or the other dimensions in Table|l| In general, as we will see in the following sections, for a particular
new innovation or technology, only a subset of dimensions may be relevant.

It is appealing to collapse several of these dimensions for an Al system to a single metric. For any given user with
rational (transitive and complete) preferences, their preferences can be represented using a utility function. A firm’s
utility function, for example, might correspond to risk-adjusted expected profit. A user’s utility function might be harder
to quantify, but is generically increasing in the performance of the system and decreasing in the costs of the system.
Denote a performance vector, v, for a given problem, which is often a unidimensional quantitative score (such as the
error), but could also have several components. A utility function maps performance and all associated resources to a
single dimension:

U(¢7F) = U(Qp,?"d,'l’k,TS,Th77’m,7"c,7’n,T’t,Tl,7"e) —u (l)

In some cases this is an additively separable function, such that U (v, 7) = B(¢)) — >_, Cy (), with the first term
accounting for the benefit according to the performance of the system minus the costs produced by the use of resources
(note that the cost functions C', are different for each resource). For economic applications, we might be able to separate
the utility function into performance generating revenue (in dollars), and resources imposing costs (in dollars).

In many cases, we are not able to collapse performance and costs into a single metric, perhaps because the utility
function is not known or varies across a population of users. Still, we can productively examine the relative performance
and costs of different systems. For any number of dimensions, we can assess the Pareto-optimal surface. For example,
Fig.|l|shows algorithms and architectures according to their MNIST prediction error and power consumption, revealing
that most solutions are not on the Pareto surface on these dimensions, with notable exceptions, such as some ASIC
architectures, which focus on efficiency in terms of chip space, speed and “energy footprint” Chen et al.[[2014].

4 The full range of accounting

The benefits and costs of developing and deploying an Al system are not incurred only once, but throughout the
many uses, reuses, and follow-on contributions. Some costs are borne exclusively during the initial conception and
development, while others recur with each adaptation to a new application, or even each application to a particular user.
In general, the total resource burden should be accounted for according to the whole cycle of the Al system.

Fig. 2] shows how the dimensions we identified can become relevant at different stages of the life cycle of an Al system.
Consider we want to assess the potential impact of a new algorithm for voice recognition. Apart from all the human
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Figure 1: Performance for MNIST |[LeCun et al.|[1998]], for 22 papers, compared to power consumption (data from
Reagen et al.|[2017]]). The Pareto frontier is also shown (we will later discuss whether the points can actually be joined
by straight segments).
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Figure 2: Illustrative representation of stages of the Al system life cycle where resources might be required.

thinking, there will be a great effort in terms of failed experiments, different libraries used, users testing the early
systems, etc. If a company takes these ideas and builds a prototype, the tests, software, hardware, and compute will
concentrate on production. When the system is reproduced (installed or shipped) to users, additional resource costs will
be incurred. Further, if the idea can be adapted for other applications (e.g., adapting a voice recognition system to other
languages), depending on its generality and reproducibility, the initial contribution can provide further value, at some
further adaptation cost including the need for new corpora, training, semantic knowledge, etc.

At each stage of the life cycle, the contribution may be deployed a multiplicity of times (represented above the boxes in
Fig.[2). The total value of the contribution thus needs to take into account the scale of its deployment. For instance,
some early speech recognition systems were pre-trained once (the system cost, denoted by C, covering the “conceive”
and “produce” stages in Fig. [2)) and then adapted to thousands of users, with extra hours of customization per user (the
application cost, denoted by C’ with j indexing each of the n applications, or users, covering the “reproduce” and
“replicate” stages). More recent general speech recognition systems do not need such customization. Consequently, the
application cost C’ is lower per user. In both cases, the total cost C'is C + Z;-l:l C’. As the number of applications
increases, the average cost will converge to the average application cost as the system cost is amortized. For this reason,
for contributions that have many possible applications, it is worth paying additional system costs so as to make the
contribution more general, adaptable, and reusable, and thereby bring down the application costs. Since Al often has
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broad potential applicability, contributions that are general, adaptable, and reusable are likely to have high utility, so
having significant economic and social impact.

Fig. not only covers direct “internal” costs (1, 7y, ...) but also some external “debts” or “societal” costs (rl, r;,
...). For instance, automated customer service systems (call centers) clearly were not a Pareto improvement relative to
previous systems, even though they may be a profit maximizing improvement or can represent a baseline of automation
for further improvement that is finally assumed as the standard service. In the end, companies reduce their labor costs
for customer service by substituting in phone-trees and voice recognition, but in the process impose time, frustration,
and other costs onto the customer. Some navigators and personal assistants can make users more dependent on them,
atrophying some capabilities or leading to a simplification of language. In other words, the user adapts to the Al system,
and assumes part of the effort or cost. In general, technological innovation both involves developing technology to fit a
given conception of the task, and adapting conceptions of the task to fit the capabilities of technology Martinez-Plumed
et al.| [2021b, [2020b]]. In the process of adapting work processes, customer expectations, relationship norms, and even
urban design to what is technologically convenient, there can be consequences for society that are not internalized by
the designers and deployers of these systems. This footprint of Al is not usually acknowledged in benchmarking, and
can have more societal impact than the technology itself.

From the previous sections, we conclude that the contribution of an Al development should, in principle, be given a full
accounting of the costs and benefits, across the contribution’s full life cycle. The current emphasis on targeting and
reporting performance benchmarks, however, poses an obstacle to a full accounting. Reproducibility and replicability
are two traditional tools for addressing this. More precisely:

* Specific reproducibility refers to whether the same result can be obtained from the same conditions and
procedures. In Al this requires that all the necessary code and data are given. This also assumes the same cost

functions as well: 37, >, ClL(ri) =nY, Cu(rs).

* General replicability will check whether the Al technique can be applied to other problems, a set of n tasks,
applications, or users indexed by j, with an overall cost Z;;l >, C2(r?) that must consider the adaptation

effort, with different resources 77 and cost functions CZ, per user.

Especially for replicability, we can experiment with different hardware architectures, change some of the software and
get different computational costs, apart from different performance. That means that the partial results for each 37 and
CZ (rJ) might be different, but we still have something replicable with similar utility. A clear example of this notion
of replicability is “approximate computation” in deep learning, where one can get much smaller computational costs
without a significant change in accuracy |[Reagen et al.|[2017]].

5 Exploring the Pareto-frontier of Al research

Corporations, governments, startups, NGOs, personal users, and contemporary and future Al researchers are the
intended recipients, or receivers, of the Al technologies being developed, and they each have different preferences,
resources and constraints, or in other words different operating characteristics Martinez-Plumed et al.|[2021a]. The
familiar concept of the ROC curve plots true positive rates (TPR) and false positive rates (FPR) for binary classifiers,
and emphasizes the importance of comparing multi-dimensional surfaces, rather than single metrics.

For instance, Fig. 3] (left) just shows a single metric, performance, as a function of time. This plot does not explain what
the cluster of attempts after 2014 really contribute, when they have more error than the already obtained human level.
Other dimensions are neglected in this plot, limiting insight about progress.

Before analyzing the case studies, we have to understand how to build and work with the Pareto frontier. When resources
are included, the analysis of optimal Pareto surfaces might be slightly different than the traditional triangulization
approach. When showing performance metrics such as TPR and FPR for two models, any point in between can be
obtained by interpolation, connecting any two points by a straight segment. However, we should note that these points
require the implementation of both models. While some of the resources can be interpolated, others (e.g., software) will
simply sum up, and the points between two points will not be achievable with a straight line, but by an axis-parallel
route.

For instance, Fig. E] (right) shows performance against one hypothetical resource. For each method, A, B, C, D, and
E, the numbers represent the extremes when varying their parameters. E1 represents a random (or baseline) model.
Assuming interpolation is possible by changing the parameters of a method but not possible between different methods,
the Pareto surface here is shown in blue. Method C can be discarded (as it is covered by A), but method B could also be
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discarded, as its region is always dominated on the two dimensions by other methods (the dashed Pareto frontier), even
if there are unreachable regions in between.
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Figure 3: Left: Performance for the MNIST benchmark (data from EFF). Best state-of-the-art results in red. Right:

A schematic representation of techniques A, B, C, D, E, with variants, the areas they cover, and the Pareto frontier
(dashsed black line).

The diversity of receivers —with different subjective utilities— and the number of dimensions suggest that a single
utility metric is simplistic. This operating condition translates into a vector, or gradient, in the multidimensional space.
For example, large technology corporations may gain significant utility from a discovery that allows modest speed-ups
in exchange for significantly increased compute demands, whereas individual researchers, personal users and startups
may find little value in such a discovery. Conversely, the existence of real recipients whose preferences can be known in
advance allows us to prioritize exploration of those configurations. From the above, we derive a few criteria to identify
progress events, where all contributions below the Pareto frontier should not be necessarily discarded:

* Improving the Pareto frontier for a known group of recipients (A1, A3 or D3 in Fig. 3] right). This would include
all-else-being-equal improvements in performance, but also reductions in computation, data, manipulation or
other resources in Table|l} This would not, however, consider extreme regions no recipient assigns value to.

* Covering a location slightly under the Pareto frontier with more flexibility (B3 in Fig. 3| right). Instead of
reaching some areas by combining existing approaches, a new technique can reach there easily with a trade-off
between its own parameters, allowing more receivers to easily find their subjectively optimal trade-offs.

* Covering a location slightly under the Pareto frontier with more diversity (C in Fig. 3| right, if it is very
different from A). The current dominant technique or paradigm can push the Pareto frontier for some time, but
slightly suboptimal approaches, especially if they are radically different (i.e., alternative “research programs”),
should not be discarded because they may lead to potential improvement in the frontier if the current paradigm
stalls.

Receivers can be incentivized to generate and communicate their gradients (though in some cases, countervailing
considerations may exist such as commercial secrecy). It is also in the interests of discoverers to show the recipients
benefited by their discovery. Brokers of such information (peer-review, surveys, competitions, etc.) are in a position
to meet the incentives (and gradients) of both researchers and recipients by ensuring such discoveries are properly
rewarded.

6 Case studies

In this section we will examine a number of representative case studies of progress in Al: Alpha*, ALE, imageNet,
personal assistants and some others.
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6.1 Alpha*

Alpha* refers to a series of papers and associated techniques by DeepMind to play board games. We analyzed the
whole series, from AlphaGo [Silver et al.|[2016]] (including the Fan and Lee versions, used against Fan Hui and Lee
Sedol, respectively, and its latest version, AlphaGo Master, which won 60 straight online games against professional Go
players), AlphaGo Zero Silver et al.[[2017a] (a version created without using data from human games) and AlphaZero
Silver et al.| [2017b] (which uses an approach similar to AlphaGo Zero to master not just Go, but also chess and shogi).

AlphaGopg, AlphaGopee AlphaGopjgster AlphaGozer, AlphaZero

rq (Data) v v v
T (Knowledge) o o o o )
T (Software) o X X o X
71, (Hardware) X X X X X
7. (Manipulation) v v v v v
T (Computation) Ve o o vV o
7, (Network) — — — — —
¢ (Time) — — — — —
r; (Load) X X X X X
T (Energy) X X X X X
1) (Performance) v v v v o

Table 2: Dimensions (resources and performance) reported in the Alpha* papers. Systems from [Silver et al.|[2016,
2017alb]

Table 2] shows whether the dimensions were reported in the papers (v'), reported in different sources (possibly from
different authors) ('), only partially accounted for (o), not mentioned but relevant (x) and not applicable (—). Many
dimensions are relevant for the analysis: the data, the knowledge, the software, the hardware, manipulation, computation
and, of course, performance, etc. However, only some of them are provided, which makes a comprehensive comparison
of the whole space difficult. Still, we will represent three dimensions: performance (in ELO ranking, which can only
be partially estimated for AlphaZero), computational resources (using the equivalence: 1 TPU,s ~ 3 TPU,; ~
36 GPU ~ 180 C'PU lJouppi et al.|[2017]) and human manipulation resources (as represented quantitatively by the
ELO ranking of the player or players the system learns fromOther dimensions (like knowledgg*|about Go, software,
etc.) are not included because of insufficient information from some papers.

What we see in Fig. [ is that the Pareto frontier at the moment is represented by AlphaGo Master and AlphaGo
ZeroAlphaGo Fan and AlphaGo Lee are discarded because AlphaGo Zero needs less computeﬂ requires no manipulation
and gets better performance. Why is AlphaZero seen as a breakthrough if it is not Pareto optimal? The answer is
generality. AlphaGo* only solved one task (Go) and AlphaZero can solve several tasks. Note that the computation
times shown in Fig. [ include both training and deployment (system and application costs). Hence, a model that is
half way between models A and B (choosing between them with equal probability), denoted by AB, has performance
P(AB) = 0.5¢(A) + 0.5¢)(B), but has a computational cost of r.(AB) = r.(A) + r.(B). This is why the Pareto
frontier in Fig. [ has parallel segments, as in Fig. 3] (right). Finally, if we look chronologically at the plot, we see that
the main gradient that has been followed has been performance.

6.2 ALE

The second case study is ALE |Bellemare et al.|[2013]], a collection of Atari games that has become popular for the
evaluation of general-purpose RL algorithms learning from screen shots. We selected all the papers (systems) from
EFF’s Al Progress Measurement Project |[Eckersley and Yomna [2017]] and the papers introducing Rainbow Hessel
et al.|[2017a] and REACTOR |Gruslys et al.|[2017]. TableE] shows what information we found about the resources and
performanceﬂ Again, many dimensions are relevant, but only a few are systematically reported: data, computation
and performance. Fig. @ represents computation and performance. Computation time (whenever the authors do not
provide this information explicitly) is roughly estimated from the kind of approach used, whether it is follow-up work,

3Complete information regarding compute can be found in TableE]in the supplementary material.

“We have the constructed features: stones to be captured or escaped, legal moves, ‘liberties’, etc. While this knowledge is crucial,
there is no cost for a new match (reproduction), but the adaptation of AlphaZero to other games (replication) may be important.

>The compute used for generating the training data, i.e. for the self-play games, has not been considered as it is unclear from
some of the Alpha* papers (only AlphaZero makes it explicit).

Complete information regarding compute can be found in Table in the supplementary material.
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the training setting used, etc., or from figures in more recent papers making explicit comparisons between them and the
state of the art|Hessel et al.|[2017a], Gruslys et al.| [2017]].

What we see in Fig. []is a current Pareto frontier dominated by REACTOR variants, ES FF and Best Linear. In this
case, the computation times in Fig. [5|includes just training time. If we select a model AB that is half way between
two models A and B (choosing between them with equal probability), we may have A train and play for half of
the ALE games and B train and play for the rest. As we average for the whole set of games, we can actually have
7.(AB) = 0.57.(A) + 0.57.(B), at least if there is no transfer effort between games. This is why the Pareto frontier is
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Table 3: Dimensions (resources and performance) reported in the ALE papers (from EFF Eckersley and Yomna|[2017]
and |Gruslys et al.[[2017]], [Hessel et al.|[2017al])

shown with direct straight segments. Regarding the research gradient (in gray), it has changed over the years, with
some disregard of compute initially and more concern in efficiency recently.

For this benchmark, it is common to find “learning curves” in the papers (e.g., Machado et al.|[2017]]), which show
performance varying on the number of episodes. This is clearly the r4 (data) but it also influences directly on
computation. These learning curves give information of full regions of the multidimensional space, as we saw in Fig. 2]

For some papers, the comparison was not possible (e.g., due to different subsets of games). It is important to note,
however, that some approaches based on genetic programming |[Kelly and Heywood [2017]] and on planning Bandres
et al.| [2018]] are valuable in terms of diversity.

6.3 ImageNet

The third case study is the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) |Russakovsky et al.|[2015].
Specifically, we focused on the ImageNet classification challenge, a multi-class classification problem framework
with about 1.2 million images for training (having 1,000 leaf-node categories in the Imagenet hierarchy), 50,000 for
validation and 100,000 images for testing. Each image is associated with one ground truth category, and performance
is usually reported as: the top-1 error rate (comparing the ground truth against the first predicted class), and the
top-5 error rate (comparing the ground truth against the first 5 predicted classes). Since the breakthrough in 2012
achieved by the first Deep Neural Network (DNN) system AlexNet|Krizhevsky et al.|[2012], several other DNNs with
increasing complexity have been submitted to the challenge in order to achieve better performance. We analyzed
the following DNNs which obtained the highest performance in these past six years, including those more recent
approaches developed for environments with a small computational budget (e.g., mobile devices): AlexNet|Krizhevsky
et al.|[2012], BN-AlexNet|Zagoruyko| [2016]], BN-NiN [Lin et al.|[2013]], ENet[Paszke et al.|[2016], GoogLeNet|Szegedy
et al. [2015]], VGG Simonyan and Zisserman| [2014], ResNet |He et al.| [2016], Inception-v3 |Szegedy et al.| [2016],
Inception-v4 |Szegedy et al.|[2017]], ShufflenetZhang et al., Mobilenet-v1 Howard et al.| [2017], Mobilenet-v2|Sandler
et al.| [2018]], Xception (Chollet [2017], Densenet Huang et al.| [2017]], Squeezenet|landola et al.|[2016], fd-MobileNet
Qin et al.|[2018]], AmoebaNet Real et al.[[2018]], SENet|Hu et al.[[2018]], Shufflenet v2 Ma et al.|[2018]], GPipe [Huang
et al.| [2018]] and PolyNet|Zhang et al.|[2017al].

Table hows the information we found about the resources and performanceﬂ In this case, many dimensions
are relevant and, although some of them are often reported (data, computation, performance, volume), the different
hardware/software used as well as the variations in data and training/evaluation techniques precludes a direct comparison
of resource utilisation between systems. Furthermore, there is a marked inconsistency in the figures found in different

"Complete information regarding compute, volume and power consumption can be found in Table [§]in the supplementary
material.
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Systems are plotted against their publication date.

paper. For instance, for the computation dimension, authors provide either training time, multiply-accumulate (MAC)
operations or FLOPs in a single forward pass for input image, etc., which are therefore not easily comparable between
systems. Still, we can compare some independent dimensions such as load (in terms of learnable parameters in each
DNN) and performance as a function of time (see Figure[6). Again, this plot does not entirely explain what the cluster
of attempts after 2017 really contributes to the progress in this domain, when they have more error than the already best
result. From the literature we can extract that, in the last few years, authors have increasingly focused on developing
highly efficient and accurate networks for very limited computational budgets, which explain why systems such as ENet,
MovileNet or fd-MobileNet have reduced their size (compact networks with a significant smaller number of parameters).
However, other interesting dimensions are neglected in this plot, limiting insight about progress in this benchmark.

In this regard, and given the relevance of the challenge and the wide variety of systems approaching it, some authors
have also tried to provide and compare some figures about the quality of different networks in more controlled (and
thus comparable) environments in terms of model sizes |Real et al.|[2018]], number of operations (see |Real et al.[[2018]],
Huang et al.| [2018]]) or evaluation procedures|Zhang et al.|[2017a]. A much more comprehensive analysis in terms of
computational requirements and performance can be found in (Canziani et al.|[2016]. From the latter, we can obtain
metrics related to memory footprint, number of operations and power consumption for a number of systems that can then
be used to compare resource utilisation. This can be seen in Fig. [7] which is a much more insightful and comprehensive
plot showing that the current Pareto frontier in imagenet is currently dominated by Inception variants, Densenet and
those more efficient networks such as MobileNet variants. For the same reason indicated in the previous section for Fig.
[} the Pareto frontier is shown with direct straight segments. The research gradient (in gray) has changed over the years,
with some disregard of compute initially and more concern in efficiency recently. Note that not all the papers in Fig. [f]
appear in Fig. [7] For some of them the comparison was neither possible nor acceptable (e.g., mainly due to lack of
information but also due to the use of different testing procedures, hardware, software, etc.)

6.4 Intelligent Personal Assistants

Another case study we analyze is Al-powered intelligent personal assistants (PA). We focus on a few big players: Siri
Apple| [2019], Alexa |Amazon! [2019alb]], Cortana |[Microsoft [2019] and Google Assistant |Google| [2019]]. PAs are
mainly based on conversational Al |Cassell et al.|[2000]], natural language processing and knowledge-base systems.
They may not represent a ‘leap’ in particular technologies, but an important progression in the integration of the current
state-of-the-art techniques to power and improve sophisticated apps and services in terms of latency, automatic speech
recognition accuracy, question answering, UI/UX, etc. Within the past few years, all these PAs have been incorporated
into a myriad of new physical devices.

However, rarely, if ever, is there evidence regarding how all these PAs have been trained, tested and developed, how
knowledge, conversational rules or utterance matching slots are defined, compiled and updated, how data is acquired

11
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Table 4: Dimensions (resources and performance) reported in ImageNet papers (from Krizhevsky et al.| [2012],
Zagoruyko|[2016], Lin et al.| [2013]], [Paszke et al.| [2016], [Szegedy et al.|[2015]],|Simonyan and Zisserman| [2014]], He
et al.[[2016], |Szegedy et al.|[2016| [2017]],|Zhang et al., Howard et al.| [2017]], [Sandler et al.| [2018]], |Chollet| [2017]],
Huang et al.| [2017]], landola et al.|[2016]],|Q1n et al.| [2018]], Real et al.| [2018]], Hu et al.| [2018]], Ma et al.|[2018]],[Huang
et al.| [2018]], Zhang et al.|[2017al]). Note that « indicates that a dimension may be reported in sources different from
the original (possibly from different authors).

(from users), which models are trained to understand natural language, reason and interact with human beings, etc.
Apart from this, the physical/cloud infrastructure needed is also presumably high with respect to GPU/CPU-based
hardware for building the models, data collection/storage/manipulation, testing and scalability tools, architectural and
design choices/models, etc.

This is all about internalities, but there are also a number of (neglected) externalities (“societal” costs) in terms of
privacy (e.g., PAs usually collect information about the services that are used (and how and when they are used), or the
impact of weariness and distrust towards a sometimes unpolished technology (e.g., misunderstood phrases, incorrect
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answers and other mistakes, challenging configurations, etc). In this regard, unlike the internalities, there is a number of
studies analysing different psychological aspects such as elderly engagement Reis et al.|[2017]], user experience Jiang
et al.|[2015]], cognitive workload (mental effort) in voice-based interactions [Strayer et al.|[2017]] or privacy Pellungrini
et al.|[2017]],|Zhang et al.|[2017b| and ethical implications |Hoy|[2018]], Manikonda et al.| [2018|).
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Figure 8: Personal assistants performance over the years 2017 and 2018 [Enge| [2018]]. While Answered refer to the
percentage of questions in which the PA has attempted to answer obtaining a correct, partially correct or a wrong
response, Correct refers to the percentage of the questions attempted answered fully correct.

Focusing on the more neglected internalities, we find that many dimensions are relevant for the analysis: data, knowledge,
software, hardware, manipulation, computation, time, load, energy and, of course, performance. However, as we can
see in Table 3] none of them are directly provided through their documentation (user guides, service manual, datasheets,
websites, etc.) and, when this is the case (e.g., vendor-reported transcription errors [Protalinski [2017]), these figures are
not reliably reported in the literature, or cannot be compared due to companies not following the same standards of
evaluation. This means having to make do with external documentation such as reviews, analyses and studies from
agencies and other media outlets.

Accordingly, using several external sources we have been able to obtain information regarding energy requirements
and consumption for personal assistants in some scenarios |[Lloyd| [2018]], [Williams| [2018]] (Figure E[), as well as some
performance values from a set of ~5,000 questions asked to each PA [Enge| [2018] (Figure [8). For each question, the
authors checked whether the PA answered (i.e., the PA thinks that it understands the question, and makes an overt effort
to provide a a correct, a partial correct or an incorrect response to what the user asked for), whether the PA provides a
direct and full correct answer to the question answered, whether the answer was wrong, and whether the answers were
sourced from a database or a third-party source (e.g., Wikipedia).
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Figure 9: Personal assistant power consumption (minimum power supply requirement, idle and reproducing music).

What we see in Figures [8and [J] is that, given the incomplete character of the information gathered, we can only
represent the evolution of performance of those different devices/IPAs from 2017 to 2018, as well as the power
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consumption required for some of them (although the latter is not very illustrative as the energy requirements of these
devices are minimal). The most immediate result in terms of performance is that Microsoft’s Cortana outperforms
Google on Google Home, where the "Home" version of Google Assistant is not as ‘smart’ as on mobile devices.Google
Assistant for smartphones can be found in 2018 (no data in 2017) the most accurate PA, attempting to answer almost
80% of the questions presented with over 90% in accuracy (correct responses obtained). Cortana also surpasses Alexa
and and Apple’s Siri by a significant margin.

Regarding the temporal evolution, if we look chronologically at the plot in terms of performance, we see that Amazon
Alexa is growing faster than any other PA: while it attempted to answer only 20% of questions in 2017, in 2018 Alexa
attempted to answer over 50%. Finally, with respect to energy consumption, although there is an obvious difference of
how much electricity various PA devices pull when standby compared to playing music, the average cost per month will
not really make a dent in the electricity bill (with costs being under a dollar per month |Lloyd| [2018]]). However, as they
have millions of users, the global impact may be less negligible, especially if we include the consumption on the server
side, which is rarely disclosed by the PA companies.

From the these plots (and data), we cannot extract a clear Pareto frontier for any dimensions, or the research gradient
over the years, making it difficult (if not impossible) to assess the different contributions or their economic and social
impact. Having into account that these systems are thought to be ubiquitious in the future, this at least worrying, and
more effort (or regulations) should be done so that some of the dimensions could be analysed and compared by users,
governments and regulators.
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Table 5: Dimensions (resources and performance) for virtual personal assistants: Siri|Apple|[2019], Alexa Amazon
[2019alb], Cortana|Microsoft [2019] and Google Assistant/Google|[2019].

6.5 Others

Further case studies can be analyzed, although with even much less detail and absence of data, so we just briefly
comment on some important cases that are considered influential or impactful in Al

IBM Watson |Ferrucci| [2012]], which uses cognitive computing technology together with information retrieval support
and natural language processing, has been successfully applied in different domains, such as health care and life
sciences, education or business analytics. However, it presumably needs a large degree of adaptation effort across
domains. It is not always explicit how much this effort is, as this is also part of the business model for IBM. As in many
other commercial products, full replicability is not possible for obvious reasons, and only some general architectural
aspects of IBM Watson are known.

Another interesting (yet again obscure) domain to explore is self-driving cars. Here, reliability, safety Hernandez{
Orallo et al.| [2019} 2020] and social acceptance are only a few of the most well-known costs, but there are a lot
more. Autonomous vehicles are not single devices but a collection of hardware and software pieces Wei et al.|[2013]]
applied in complex and novel ways, so involving new research, development and production costs. For instance, with
regard to hardware, while radars and sensor are already cheap and robust enough to be incorporated into mass-market
cars, laser-shooting LIDAR or 3D photometry are still expensive solutions. The same happens with software: safe
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driving requires more than state-of-the-art computer vision, it is also necessary to identify blind spots, use artificial
intuition, anticipate driving behaviour, etc. All of this requires breakthrough end-to-end solutions with high costs
in terms of data collection, model training, and testing in both simulation and real environments. Again, it is not
always clear and transparent how much of this effort comes from high-level competition in the market between these
players (e.g, Waymd®| General Motorsﬂ Ubel{ﬂ Tesla{ﬂ etc.). On the other hand, we can also think about the not
fully-explored societal costs (or benefits) self-driving cars might entail in terms of unemploymentPoczter and Jankovic
[2014], pollution |Peter Fox-Penner and Gorman| [2018]], traffic World Economic Forum| [2018]], infrastructures and
urban design [Urmson et al.|[2008]], fatalities [Sivak and Schoettle| [2015]], etc. In the same way, regulations are now
compulsory for cars in terms of declaring their emissions, some other indicators of the Al self-driving technology that
is incorporated in a car should also be disclosed and approved, so that we could plot several dimensions. Otherwise the
cars of the future may end up having very efficient engines, but very inefficient ‘brains’.

7 Conclusions

The interest in more comprehensive evaluation protocols to assess the potential impact of new Al technologies and the
progress they represent, going beyond performance alone, was illustrated by some of the references we included in
the background section. However, in order to rigorously evaluate the impact a new contribution in Al can have more
broadly, we need an explicit enumeration of all the dimensions (as represented by Table[I)) and their integration into
utility functions or their representation in a multidimensional space, with a clear delimitation of the extent of accounting.
This represents a novel model to help anticipate the impact of a particular Al technology, bringing dimensions that
are usually part of other disciplines or still not sufficiently technical or developed to be considered as parameters to
optimize or evaluate. The several scenarios we have analyzed in this paper illustrate how the evaluation techniques can
be applied in practice, but they also show that more transparency (through accountability, openness and replicability)
has to be applied to Al research in the first place, to assess the contributions and potential economic and social impact
more scientifically.

Of course, there can be resistance from Al researchers and reviewers, as more dimensions and indicators in papers,
products and competitions can be seen as a counter-productive burden. Also, the lack of these dimensions in many
papers today make illustrative examples, such as those we have included here, more challenging.

While we share some of these concerns, we have to look retrospectively to areas that were completely neglected a
few years ago Hager et al.| [2017]], such as fairness, with a wide range of technical metrics that can be used in utility
functions or in trade-offs against other dimensions. Similarly, this is what happened in cost-sensitive learning more
than 15 years ago |[Elkan|[2001]], Turney| [2002], leading to a wide range of techniques that covered different operating
conditions. While all these costs are nowadays integrated into the measures of performance, many other resources are
not, as we have surfaced here. Within this framework, we make a series of recommendations:

* Benchmarks and competitions should be defined in terms of a more comprehensive utility function, considering
as many dimensions as possible, or recognize the value of all contributions that have any of the positive effects
on the Pareto frontier identified previously, in short or long terms.

 Papers presenting or evaluating algorithms should generally try to report the whole region they cover, and
how to navigate the region by modifying parameters or resources. There are many partial examples nowadays:
learning curves, plots comparing the number of models vs. performance, planning performance vs. lookahead,
etc.

* These utility functions and multidimensional spaces must also be seen in terms of replicability, for variants of
the problems and at different stages of the Al life cycle. The multiplicities are more difficult to plot graphically,
but we can still define operating conditions depending on the adaptation (or transfer) effort for m problems, or
7 USers.

Frequently, we will not be able to say that one technique is ‘better’ than another: they just cover different regions of the
multidimensional space. It is the receiver who will choose the system that best fits their needs. Having a representation
of the Pareto frontier may hugely facilitate this choice for other researchers and industry, as simply as moving the
gradient until touching the Pareto surface. Also, small players in Al could focus on those areas that require less
resources and still contribute to the Pareto frontier or to diversity. Finally, the Pareto surface can help detect some

*https://waymo.com/
“https://getcruise.com/
Uhttps://www.uber.com/info/atg/technology/
"https://www.tesla.com/autopilot
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societal risks, and unexpected huge social impact, especially if we see that a powerful capability in Al can be achieved
with very few resources, becoming available to malicious actors.

This view of the operating condition as a gradient may suggest clever approaches to push the frontier for some resources,
as gradient descent is increasingly being used at a meta-level  Andrychowicz et al.|[2016]]. In general, we hope this
paper will help change perceptions, promote more general and versatile techniques, highlight the trade-offs, and raise
awareness of the overall “Al footprint”, well beyond performance.
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A Supplementary materials

A.1 Case study 1: Alpha* series

In this section, we showcase the resources used for the development of the Alpha* systems to play board games. Table
[6] shows the computational resources for the different Alpha* systems according to the information disclosed in the
original papers. It should be noted that most of the computational effort for the development of AlphaGo Master,
AlphaGo Zero and the Alpha Zero was used for generating the training data (self-play games). However this data is
not explicitly specify for all the systems with the exception ofAlpha Zero. Therefore, the compute power used for
generating this training data has not been considered for generating the multidimensional utility space for Alpha*.

Self-Play Self-Play  Training HW Training HW  Playing HW Playing ELO rating Publication

HW HW (CPU) (CPU) HW (CPU) Date
AlphaGo Fan|Silver - - 50 GPU 250 176 GPU + 1202 2082 3144 Jan 2016
et al.|[2016] CPU
AlphaGo Lee|Silver - - 50 GPU 250 1920 CPU + 280 3320 3739 March 2016
et al.|[2016] GPU
AlphaGo Master - - 64 GPU 320 4TPU,, 240 4848 Dec 2016
Silver et al.|[2016]
AlphaGo Zero|Silver - - 64 GPU + 19 339 4TPU,, 240 5185 Oct 2017
et al.|[2017a) CPU
Alpha Zero [Silver 5000 TPU,; 300000 64 TPU,, 11520 4TPU,, 720 5000 Dec 2017
et al.|[2017b]

Table 6: Computational resources for Alpha* systems. Normalized hardware (in CPUs) has been calculated using the
equivalence: 1 TPU,s ~ 3 T PU,; ~ 36 GPU ~ 180 C' PU from Jouppi et al.|[2017]])

A.2 Case study 2: ALE papers

In this section we examine the resources used for producing the RL-based systems to play the collection of Atari games
in ALE benchmark. Table[/|shows the computational resources for the different systems addressing ALE benchmark
according to the information reported in the original papers. In this case, most of the computational effort for the
development of the systems fall within the training procedures (CPUs per day and millions of frames used to learn).
Whenever the authors do not provide this information explicitly, (e.g., training time or harware used), this is roughly
estimated from the kind of approach used, whether it is follow-up work, the training setting used, etc., or from figures
in more recent papers, which make explicit comparisons between them and the state of the art (such as in|Hessel et al.
[2017al], |Gruslys et al.|[2017]).

A.3 Case study 3: ImageNet papers

In this section we disclose the resources used by systems addressing the third case study: the Imagenet Large Scale
Visual Recognition Challenge (ILSVRC). Table [§]shows a number of metrics related to the computational resources
used by the different approaches (training hardware, number of layers, number of training images, training time and
number of operations) as well as their load/size (number of parameters learned) and the energy consumption, according
to the information disclosed in the original papers or in different sources (possibly from different authors).

A.4 Case study 4: Personal Assistants

In this section we display some of the costs (power requirements in deployment) and performance of those virtual
personal assistants analysed in the fourth case study. Table[9]shows the values of this limited number of resources,
mostly collected from external sources.
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Algorithm Training Training Training #Workers Training Games Frames Test  Score norm. Publication
Time HW HW Frames Tested  Test Procedure (median) Date
(days) (CPU/days) (Millions)

Best linear |Bellemare et al.[[2013] 17 CPU 17 1 0.15 50 18000 - 14.04 19/0772012
DQN bestMnih et al.[[2013] 8 GPU 40 1 50 7 - - 67.96 1971272013
Nature DQN|Mnih et al.|[[2015] 8 GPU 40 1 50 49 18000 noop 92.67 26/0272015
Gorila|Nair et al.[[2015] ] GPU 20 100 200 49 108000 hs 68.56 15/0772015
DDQN (tuned) hs|Van Hasselt et al.[[2016] 8 GPU 40 1 200 57 108000 hs 121.04  22/09/2015
DQN hs|Van Hasselt et al.[[2016] 8 GPU 40 1 200 19 108000 hs 68.52 22/09/2015
DQN noop|Van Hasselt et al.[[2016] 8 GPU 40 1 200 49 18000 noop 89.30 22/09/2015
Prior hs|Schaul et al.[[2015] 8 GPU 40 1 200 49 108000 hs 119.74 18/1172015
Prior noop|Schaul et al.[[2015] 8 GPU 40 1 200 49 108000 noop 137.66 18/1172015
DDQN (tuned) noop|Wang et al.[[2015] 8 GPU 40 1 200 57 18000 noop 13252 20/T172015
Duel hs|Wang et al.|[[2015] 8 GPU 40 1 200 57 108000 hs 131.66 20/1172015
Duel noop|Wang et al.[[2015] 8 GPU 40 1 200 57 18000 noop 166.38 20/T172015
Prior+Duel hs|Wang et al.[[2015] 8 GPU 40 T 200 57 T08000 hs 123.48 20/1172015
Prior+Duel noop|Wang et al.[[2015] 8 GPU 40 1 200 57 18000 noop 159.73 20/1172015
A3CFF (1 day) hs|Mnih et al.[[2016] 1 CPU I 16 320 57 108000 hs 78.53 04/02/2016
A3C FF hs|Mnih et al.[[2016] 4 CPU 4 16 320 57 108000 hs 117.44  04/02/2016
A3CLSTM hs|Mnih et al.[[2016] 4 CPU 4 16 320 57 108000 hs 112.63 04/0272016
DDQN+Pop-Art noop van Hasselt et al.[[2016] 8 GPU 40 1 200 49 108000 noop 112.83 2470272016
A3C-CTS|Bellemare et al.[[2016] 4 CPU 4 16 200 60 - - 89.67 06/06/2016
SARSA [Bellemare et al. [[2012] 30 CPU 30 1 2 46 - - 10.09 06/06/2016
TRPO-hash|Tang et al.|[[2017] 8 GPU 40 1 50 6 - - 28.90 15/T1172016

Ostrovski et al. [[2017] 8 GPU 40 1 150 57 - - 11.98 03/0372017
DQN-Pixel CNN|Ostrovski et al.[|2017] 8 GPU 40 1 150 57 - - 27.45 03/03/2017
ES FF (1 hour) noop|Salimans et al.[[2017] 0.0416 CPU 0.0416 1 1000 M 51 108000 noop 40.18 10/03/2017
REACTOR hs|Gruslys et al.|[2018] 2 CPU 2 10+ 17 200 57 108000 hs 154.42 15/04/2017
REACTOR 500M hs|Gruslys et al.|[2018] 4 CPU 4 10 + 17 500 57 108000 hs 185.56 15/04/2017
REACTOR noop |Gruslys et al.|[[2018] 2 CPU 2 10+ 17 200 57 18000 noop 185.95 15/04/2017
REACTOR 500M noop |Gruslys et al.[[2018] 4 CPU 4 10+ 17 500 M 57 18000 noop 291.74 15/04/2017
Sarsa-eMartin et al.[[2017] } 8 GPU 40 1 100 M 5 18000 noop 28.07 25/06/2017
Sarsa-f-EBMartin et al.[[2017] 8 GPU 40 1 100 M 5 18000 noop 62.86 25/06/2017
C51 noop|Bellemare et al.[[2017] 8 GPU 40 T 200 M 57 18000 noop 17771 2170772017
Rainbow hs[Hessel et al.[[2017b] 10 GPU 40 1 200 M 54 108000 hs 14496  06/10/2017
Rainbow noop|Hessel et al.|[[2017b] 10 GPU 40 T 200 M 54 18000 noop 23246 06/10/2017

110 actor-learner workers (CPUs) and 1 parameter server.

Table 7: Computational resources for the systems addressing ALE benchmark |[Bellemare et al.[[2013]]. Systems from
Eckersley and Yomna)| [2017]], Hessel et al.| [2017a], |Gruslys et al.|[2017]]. Normalized training time (in CPUs) has
been calculated using the equivalence: 1 GPU ~ 5 C PU from Jouppi et al.|[2017]]. #Workers represents the number
of parallel machines used. We calculated median human normalised scores across all games according to Nair et al.
[2015]).

System Training HW #Layers #Params Batch Training G-Ops* Net power Top-1 Date
(Millions)  Size time (Watts)* ACC*
AlexNet|Krizhevsky et al. [[2012] 2 x nVidia GTX580 8 60 128 6days 2.26 11.20 54.61 03/12/2012
BN-NIN|Lin et al.[[2013] 8 8.6 128 - 2.52 12.60 62.62 16/12/2013
VGG-16Simonyan and Zisserman|[2014] 4 X nVidia T1tan Black 16 138.4 64  2-3weeks 30.97 12.40 70.62 04/9/2014
VGG-19/Simonyan and Zisserman|[2014] 4 x nVidia Titan Black 19 143.7 128 2-3weeks 39.29 12.20 70.74 04/9/2014
GoogLeNet|Szegedy et al.[[2015] few GPUs 22 7 128 Tweek 3.00 11.15 68.70 17/9/2014
BN-AlexNet[Zagoruyko[[2016] - 8 60.6 256 - 1.30 11.40 56.60 11722015
Inception-v3[Szegedy et al.[[2016] 50 x NVidia Kepler 42 23.85 256 - 11.45 12.30 78.53 02/12/2015
ResNet-18He et al.[[2016] few GPUs 18 11.7 256 - 3.63 12.30 69.57 10/12/2015
ResNet-34|He et al.|[2016] few GPUs 34 21.8 256 - 7.34 12.80 73.27 T0/1272015
ResNet-50|He et al.[[2016] few GPUs 50 25.6 256 - 8.21 11.80 75.99 10/12/2015
ResNet-10THe et al.[[2016] few GPUs 101 44.6 256 - 15.65 11.45 77.56 1071272015
ResNet-152|He et al.|[[2016] few GPUs 152 60.3 256 - 23.10 11.40 77.84 10/12/2015
Inception-v4[Szegedy et al.[[2017] 20 x NVidia Kepler 75 31.6 256 - 18.44 11.60 80.10 237272016
ENet|Paszke et al.[[2016] 4 nVidia Titan X 29 5.9 128 3-6hours 1.57 11.60 68.40 77672016
DenseNet-121|Huang et al.|[2017] 8 x nVidia Tesla M40 121 8 256 - 571 - 74,98 257872016
DenseNet-169|Huang et al.|[2017 8 x nVidia Tesla M40 169 14.2 256 - 6.77 - 76.20 25/8/2016
DenseNet-201|Huang et al.|[2017 8 X nVidia Tesla M40 201 20 256 - 8.65 - 77.42 25/8/2016
Xception |[Chollet|[2017] 60 x nVidia K80 36 22.9 256 3days 16.75 - 79.00 07/10/2016
SqueezeNet|landola et al.[[2016] - 8 1.3 512 - 1.64 - 57.50 0471172016
PolyNet|Zhang et al.[[2017a] 32 x nVidia Titan X 92 2.9 512 - - - 81.29 17/1172016
MobileNet-vI|Howard et al.[[2017] - 14 4.3 96 - 1.14 - 70.90 17/472017
ShuffleNet|Zhang et al. 4 x GPUs 8 1.9 1024 1-2days 1.57 - 62.20 04/7/2017
MobileNet-v2|Sandler et al.|[2018] 16 x GPU 20 33 96 - 0.60 - 71.80 13/1/2018
fd-MobileNet|Qin et al.|[[2018] 4 x GPUs 12 2.9 256 - 0.29 - 65.30 117272018
AmoebaNet|Real et al.[[2018] 450 x nVidia K40 - 469 256 7days - - 83.9 05/02/2018
Shufflenet v2[Ma et al. [2018] 64 x nVidia Titan Pascal 164 137 4 - - - 81.44130/07/2018
SENet Hu et al.|[2018] 8 x nVidia Titan X 154 145.8 256 - - - 80.19705/09/2018
GPipe|Huang et al.|[2018] TPU,2 - 557 256 - - - 84.3716/11/2018

! Results over the ImageNet validation set.

Table 8: Computational, load, and energy resources for ImageNet systems. Some of the values for the attributes with =
were obtained from |Canziani et al.[[2016].
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System Power Req. Power Idle Power Playing Q. Attempted Q. Correct Q. Q. Correct Date
(Watts) (Watts) music (Watts) (2017) (2017) Attempted (2018)
(2018)

Apple Siri - - 9.25 31.40 86.10 40.80 80.00 12/10/72011
Microsoft Cortana - - - 53.90 86.00 64.90 91.60 2/412014
Amazon Ist-Gen Echo 21.00 2.95 3.25 19.80 94.50 53.70 86.20 6/1172014
Amazon Ist-Gen Echo Dot 9.36 1.75 2.25 19.80 94.50 53.70 86.20 17372016
Google Assistant - - - - - 77.20 95.20 17572016
Amazon 2nd-Gen Echo Dot 9.36 1.75 2.25 19.80 94.50 53.70 86.20 20/1072016
Google Home 33.00 2.00 - 65.30 94.50 66.20 87.50 4/T172016
Amazon Echo Spot 10.92 2.08 2.90 19.80 94.50 53.70 86.20 277972017
Amazon 2nd-Gen Echo 21.00 1.95 2.90 19.80 94.50 53.70 86.20 171072017
Google Home Mini 9.00 1.50 2.25 65.30 94.50 66.20 87.50 471072017
Google Home Max - - - 65.30 94.50 66.20 87.50 471072017
Amazon Echo Plus 30.00 2.40 3.65 19.80 94.50 53.70 86.20 3171072017
Apple HomePod - 1.76 9.25 31.40 86.10 40.80 80.00 97272018
Amazon 3rd-Gen Echo Dot 15.00 - - 19.80 94.50 53.70 86.20 1/972018
Google Home Hub 33.00 - - 65.30 94.50 66.20 87.50 9/10/2018

Table 9: Energy resources for personal assistants. Performance values (questions attempted and questions correct) are
from [Enge| [2018]] where the digital marketing firm Stone Temple tested the assistants via an exhaustive list of 4,942
queries. Power requirements have been collected from manuals and other sources. Power consumptions (iddle and

playing music) are from [Lloyd|[2018]], Williams|[2018]]
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