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Abstract

The world appears to be entering an era of heightened great power technological compe-
tition in areas such as artificial intelligence. This is concerning because deploying new
technologies often involves private benefits and broadly distributed risks. We analyze
a dynamic model of a technology competition with negative externalities. Competitors
can sometimes reduce risks through a self-enforcing pact in which a laggard agrees not
to pursue one kind of technology and in exchange the leader shares other technical dis-
coveries. When the rewards from technological preeminence are high, rivals can only
avoid a race if the gap between them is neither too large nor too small. Tech-sharing
bargains preserve the laggard’s threat to resume racing if the leader reneges, and there-
fore can work when the leader cannot credibly promise to simply pay the laggard not
to race. We further show that tech-sharing bargains do not require perfect monitoring
capability by either party.
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In the early 1960s, US President Kennedy warned the public to expect a vast increase in

the number of nuclear weapons states within a decade.1 Many believed this expansion would

dramatically raise the risk of a nuclear conflict. Yet, the increase did not occur. One reason

appears to be the signing of the Non-Proliferation Treaty (NPT), which consists, in part,

of a fundamental bargain: nuclear weapons states would share civilian nuclear technology

with non-nuclear weapons states in return for commitments not to pursue nuclear weapons.

In this article, we analyze whether actors in future technology races might make a similar

bargain — some technology sharing in return for some restraint — in order to limit joint

risks.

Great powers are increasingly participating in a dangerous and destabilizing race to ac-

quire artificial intelligence (AI) technologies that will give them an edge in military and

political competition. China has declared that it seeks to lead the world in AI by 2030.2

Meanwhile, the recently published Final Report of the National Security Commission on

Artificial Intelligence declares that the United States “must win the AI competition that is

intensifying strategic competition with China.”3 Other actors are pursuing their own inten-

sive development plans. Such competitions are concerning not only because of the ways they

might upend global stability, but also because they limit opportunities for states to cooperate

in managing the substantial risks from the development of advanced AI applications.

We model such competition between states, in which research can yield powerful advan-

tages to whoever reaches a major milestone first but, along the way, some new technologies

may have negative consequences that spill over to all competitors. We characterize condi-

tions under which race leaders choose to share some of their discoveries with laggards in

order to deter participation in the race.

1Press Conference, 21 March 1963, Public Papers of the Presidents of the United States: John F. Kennedy,

1963 (Washington, D.C., U.S. Government Printing Office [GPO], 1964), 280; New York Times, 23 March

1963.

2State Council of China 2017.

3Schmidt et al. 2021, 2.
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We find that such entry-deterrence-through-sharing equilibria exist even when actors

cannot verify that others are complying with an agreement. In fact, such equilibria are

available under some conditions when wealth-transfer equilibria, in which a technology leader

“buys off” a laggard, are not. The size of the gap between the research leader and a laggard

is a critical factor determining whether sharing equilibria exist. Sometimes, under conditions

we explain below, the gap must be neither too small nor too large. Thus, partial sharing

of technology advances in return for restraint in pursuing the most dangerous technologies

may be a viable solution for some of the governance challenges posed by powerful emerging

technologies.

The model we analyze is unlike others in the literature. Many models of arms or technol-

ogy races are static models with finite, known endpoints (Kydd 1997; Armstrong, Bostrom

and Shulman 2016; Naudé and Dimitri 2018), but arms competition takes place over unde-

termined lengths of time that are themselves endogenous to the strategic process. Without

a dynamic framework, we cannot ask whether the threat of mutual defection can enforce

welfare-improving equilibria, how actor incentives are expected to change over time, and

how these changes affect the possibility of near-term cooperation. Some models employ the

repeated games framework (Axelrod 1984; Downs and Rocke 1990; Fearon 2018), which im-

plies an infinite horizon, and thus allow at least for these questions to be asked.4 These

models do not allow for changing stocks of arms or knowledge that persist from period to

period, however, which are essential to arms race processes.5 One arms race paper is an

exception (Fearon 2011), but it focuses on Markov perfect equilibrium in which the actors

cannot achieve cooperation by threatening to punish uncooperative behavior. Such an ap-

4Other models in this substantial literature include Powell 1993 and Jackson and Morelli 2008.

5Han et al. (2020) employ an evolutionary approach to understanding safety-research investment tradeoffs.

That framework does not model the actors’ strategic choices, and instead assumes that a natural selection

process can weed out unsafe AI developers. This assumption is in contrast to other formulations of the

strategic dilemma, including the one we adopt here, in which there is always some risk when deploying new

technologies, and failures affect other players.
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proach is valuable in that it can inform about factors that influence actors’ incentives, but

it does not allow us to investigate the potential effects of self-enforcing agreements, which

experience indicates were essential in past competitions. Below, we analyze a dynamic model

with a changing stock of knowledge for each of two players who are able to respond to each

other’s actions. One of our objectives is to demonstrate a partly analytical and partly com-

putational approach that can be applied with relative ease to examine the consequences of

a wide range of assumptions beyond the premises we will examine here.

The technology race we describe is also different from other race models, such as those

designed to represent patent races and other sorts of technological development races.6 Un-

like these other contexts, actors in our model have the opportunity — and sometimes the

incentive — to share knowledge in each period. There is a benefit to research advancements

when they occur, in each period, as well as negative externalities from some technological

discoveries that turn out to have unintended consequences when first deployed. There is also

both a benefit to the actor who is the first to reach a threshold and a cost to the actor who

does not. We conceive of this benefit and cost as the result of developing a “transformative

artificial intelligence” (TAI), but the same analytical structure applies to other races in which

there is a strong incentive to be the first to reach some milestone.

The baseline model reveals that the gap in the players’ technological knowledge, which

has not been incorporated into similar strategic models before, has interesting effects. When

the benefits of small, near-term, or “basic” AI advances are low enough, the leader can

persuade the laggard not to compete if they are far enough behind. But when the benefits

of basic AI advances are higher and the stakes of being first to TAI are also high, a race can

only be avoided if the laggard is close enough to the leader to compel them to make a deal.

While reliable compliance monitoring is clearly useful for facilitating agreements between

rivals, we show through extensions to the model that technology-sharing agreements can be

a viable way to prevent a race even when actors cannot perfectly observe whether each side is

6See Langinier and Moschini 2002 for a review of this literature.
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complying. We show that such technology-sharing agreements can prevent a race when it is

impossible for the leader — or anyone else — to make cash transfers to keep the laggard out

of the race. By allowing the laggard to maintain their threat to resume racing, technology

sharing allows the leader to credibly commit to upholding their end of the deal.

After discussing the main model and these extensions, we present a case study of the

Treaty on the Non-Proliferation of Nuclear Weapons, which illustrates how international

technology-sharing agreements can work in practice. The case also demonstrates that such

trades can be necessary to convince states to give up the pursuit of a powerful technology.

Approaches to Modeling an AI Arms Race

Advances in AI are having an increasingly significant impact on nations’ security. New

types of AI are likely to affect many areas of inter-state competition, including disinforma-

tion, intelligence analysis, military logistics and decision-making, cyber warfare, and lethal

autonomous weapons.7

Despite the leading role played by the private sector in developing AI8 and the fact that

AI innovations have been “diffusing rapidly” across borders,9 competition between states for

advantages in AI remains a cause for concern. Not only are governments like China spending

billions of dollars annually on AI research,10 they also have policy tools for monopolizing

access to some AI discoveries. States like the U.S. also have the ability to nationalize tech-

7See: Ayoub and Payne 2016; Allen and Chan 2017; Thomas 2020; Schmidt et al. 2021. AI can also affect

national security indirectly: as automation increasingly transforms economic activity, the invention and

diffusion of AI innovations will shape economic growth and therefore the relative resources available to

states (Scharre 2021).

8Arnold, Rahkovsky and Huang 2020; National Science Board 2022

9Schmidt et al. 2021

10Acharya and Arnold 2019
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nologies that are important to their security.11 Meanwhile, in other states like China, the

government and technology sectors are already tightly linked. All states also retain tools

that enable them to slow the diffusion of technological discoveries to other countries, such

as controls on exports of technologies and data, and restrictions on international academic

collaboration.12

Among computer scientists and scholars in cognate fields, a growing community per-

ceives substantial risks to be inherent to development in AI.13 Zwetsloot and Dafoe (2019)

distinguish three categories of AI risks: “misuse”, “accident”, and “structural.” “Misuse”

risk is related to the fact that many AI technologies seem to be “dual-use”: easily adapt-

able for malicious purposes their developers didn’t intend. For example a commercial drone

might turn out to be easy for terrorist groups to modify to carry explosives (Danzig 2018;

Zwetsloot and Dafoe 2019). “Accident” risk refers to situations in which an AI application

turns out not to achieve its intended goal at all or to have significant negative side effects,

such as a self-driving car that fails to detect pedestrians (Kumar et al. 2019; Zwetsloot and

Dafoe 2019). Finally, AI may create “structural” risk by changing strategic incentives in

dangerous ways. For example, AI algorithms that make it easier to destroy another nuclear-

armed state’s second-strike capability may create incentives to escalate conflicts or launch

preemptive strikes (Moore Geist 2016; Zwetsloot and Dafoe 2019).

Harms from some AI systems can spill over onto many other people besides their design-

ers. In the 2010 “Flash Crash,” stock trading algorithms drove a selling frenzy that briefly

11Baker 2021.

12Paarlberg 2004; Fischer et al. 2021

13Other fields of research may be associated with similar risks. Although some of these dangers are speculative,

and may be unlikely, they cannot be discounted, because their effects are potentially large. Researchers in

biology may threaten humanity by engineering a pathogen that escapes into the environment (Beckstead

and Ord 2014). Or, in similar fashion, an industrial process may have poorly understood effects because

of insufficient research into its safety. The mining of the oceans’ hydrothermal vents is an example of an

industrial process that may disrupt Earth’s ecosystem (Ahnert and Borowski 2000).
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destroyed over a trillion dollars of wealth (Allen and Chan 2017). YouTube’s video recom-

mendation algorithm, designed to maximize user engagement, appears to have inadvertently

directed users to view extremist content (Rudner and Toner 2021).

Any new technology can have consequences its designers didn’t intend. Yet trends in AI

toward greater speed, complexity, and integration across a range of sectors suggest it may

make it particular hard to anticipate these risks and to correct problems before they inflict

substantial damage (Danzig 2018; Zwetsloot and Dafoe 2019; Rudner and Toner 2021).

Unlike the large literature on patent races (Langinier and Moschini 2002), more recent

studies ask how technology races can be made safer by ameliorating the “all-out” nature of

the race so that fewer parties participate or do so with greater care for the general welfare.

The literature to date does not, however, analyze strategic contexts with the essential features

of these risky technology races. The arms race literature tends to represent races in which

there are decreasing returns to investment. If two adversaries build a hundred ships, building

one more will have less effect on the balance of power than doing so when each side has a

single ship in its fleet. The first ship built has a larger marginal impact on a state’s ability

to achieve its objectives than the last. Many races of the past had this character in part

because they involved scaling up using existing technology. Once the U.S. and Soviet Union

both possessed nuclear arms, for instance, the nuclear race was a decreasing-returns context,

at least in terms of the direct impact of arms on security as opposed to any impact of arms

on status, which may sometimes accrue to the actor with the larger arsenal. Once you can

largely destroy your adversary, even after it has largely destroyed you, there’s no need for

the ability to destroy it a second time; from the material strategic standpoint, the race can

stop.

A race to acquire nuclear weapons technology has a fundamentally different character.

In this case, almost building a weapon has little value. The beginning stages of investment

in development produce no direct effects on state capacities or relations. Only once a line is

crossed and all the needed breakthroughs have been made is there a discontinuous change
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in actor capabilities.

The race to acquire TAI and other technologies participates in both of these dynamics, but

it more nearly resembles the latter. In the near term, research in AI has immediate benefits

across economic sectors, from defense to grading homework assignments. These types of

developments might be characterized by decreasing marginal returns, but they are not as

severely decreasing as the returns to building an additional nuclear warhead because new

technology implies new economic rents and other new capabilities. In the long-term, many

believe that progress in AI may be characterized by tipping points. As Good (1966) pointed

out a half century ago, computing speeds imply that a general artificial intelligence with the

ability to improve itself might quickly achieve abilities that are hard even to comprehend

but which would be advantageous to an actor that could control it.14 Thus, the race may

be characterized by dramatically increasing returns, but the time and effort required to

produce those returns is unknown. This is one of the factors that makes these technology

races importantly different from most arms race models. In a practical sense, these dynamics

imply that in such technology races, from the point of view of individual actors, “more is

better” to a greater degree than in traditional arms races.15

Another difference between an AI race and many arms races of the past is in the degree

of domination that winning the race may imply. An actor that controls a TAI could have the

ability to develop extraordinary new capabilities, the limits of which are impossible to predict.

Even near-term AI progress in technologies like continuous monitoring and processing of

information, cryptography, and autonomous weapons could radically alter the balance of

power, possibly leading to new instances of domination by some political entities. The

14There is no guarantee of an “intelligence explosion” to extreme levels because the returns to investment in

improvement may be severely decreasing. As Russell (2019, 143) points out, however, there is no convincing

argument that “creating any given level of machine intelligence is simply beyond that capacity of human

ingenuity.”

15See Huntington 1958 on the difference between qualitative and quantitative arms control, and Glaser 2000

for a review.
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potential for domination and the degree to which “more is better” mean that an AI race

may be more competitive than arms races of the past. The presence of significant global

risk makes it potentially more dangerous, especially if those risks are not widely appreciated.

There is a strong need therefore to understand opportunities to ameliorate the potentially

all-out nature of the race.

This article investigates these questions through a model that builds on several strands

of literature. In fact, however, no previous study analyzes a race model that combines the

following features: (1) Research progress is stochastic such that the timing of developments

and any endpoint, if there is one, is unknown. (2) The actors develop stocks of knowledge or

technology as time progresses. (3) The actors make strategic choices throughout. (4) There

is a risk of accidents or negative externalities that affect all actors. We know of no model in

any discipline that combines these four, and to them, we add one other distinct feature: (5)

Actors can choose to share a portion of their research results.

In this article, we study the possibility that race leaders could deter laggards from par-

ticipating in a technology race through sharing a portion of the fruits of their research. This

arrangement allows both players to increase their technological knowledge at the same rate

in expectation as if they were researching separately, while investing fewer resources because

they are not making redundant discoveries. Potentially more importantly, it reduces the

competitive dynamics of the technology race, potentially facilitating greater reflection be-

fore risky technologies are deployed and reducing the number of deployments of technologies

that turn out to be harmful. Because the leader shares technology it has already tested, the

laggard is also able to avoid repeating the leader’s mistakes.16

From the point of the laggard, this tradeoff — giving up pursuit of certain technologies

in return for assistance with others — mirrors the bargain at the heart of the nuclear non-

proliferation regime. States that sign on to the Non-Proliferation Treaty receive assistance

16Although we do not model investments in AI safety in this paper, a technology-sharing arrangement that

induces one player not to compete would also ameliorate pressure to cut corners on investing in safety.
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with their civilian nuclear energy programs; in return, they agree not to pursue nuclear

weapons. The International Atomic Energy Agency (IAEA) plays an important role in

sharing technical knowledge with NPT signatories, helping them not only to expand their

peaceful nuclear capabilities, but also to make their nuclear activities safer and more secure,

reducing risks to other countries. While this approach has been controversial, with some

worrying that civilian assistance has encouraged the spread of weapons technology,17 the

NPT has arguably proven remarkably successful. Although observers at the start of the

nuclear age predicted the emergence of dozens of nuclear states within a couple decades,

and although approximately 40 countries have the capability to develop nuclear weapons,

only 9 have done so.18 Other factors contribute to this outcome, including alliance nuclear

umbrellas, but the carrot of civilian nuclear assistance appears to have been an important

factor in convincing countries like Egypt and Ukraine to refrain from developing or keeping

nuclear weapons.

In the context of AI research, the approach we study has an important benefit over

attempts to buy off actors, namely, that the leader has a continuing incentive to comply.

Sharing knowledge produces cooperation in cases where ongoing resource transfers cannot

because, in the case of resource transfers, the sides realize that eventually the leader will have

no incentive to continue with the transfers. Once the leader is far enough ahead, the laggard

cannot race effectively if it decided to do so; therefore, there is no need to continue to buy

it off. Realizing in the beginning that the transfers will be short-lived, the laggard will not

agree to a deal. Lump sum resource transfers from the leader to the laggard are similarly

ineffective unless contracts can be enforced by governing powers because once the laggard

has been paid, it can simply continue the race. Sharing knowledge avoids these dilemmas by

maintaining the credible threat of the laggard reentering the race.

In the baseline model we describe below, players are fully informed of each other’s actions

17Bluth et al. 2010; Fuhrmann 2012.

18Campbell, Einhorn and Reiss 2005.
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and all the players understand the meaning of a “unit” of research effort. We do not study

the question of how research gains might be quantified in the real world. Although this

question is essential for practical applications, we believe it is also secondary to identifying the

strategic incentive conditions under which the actors can escape the all-out race equilibrium.

A plausible quantification strategy in an agreement between the parties might be simply to

require that the research leader provide the laggard with all research product up to a certain

date. Alternatively, particular technological milestones might be identified and disclosed

according to a schedule. Other sharing strategies may be preferable, however.

Because players are fully informed in the baseline model, laggards do not have to ques-

tion whether leaders are sharing their most important findings, and leaders do not have to

question whether laggards are cheating on any commitments to refrain from research activ-

ities. In two extensions, we show that technology-sharing bargains can still be feasible even

when the leader cannot perfectly monitor the laggard’s compliance or vice versa. Indeed,

there are additional reasons to suppose that the full-information assumption may be less

influential than it might at first appear. From the laggard’s point view, it is probably often

the case that the leader can only get away with hiding research gains if the leader is itself

not profiting from those gains by turning them into commercial products. It is true that the

leader could move closer to TAI without the laggard knowing, but if the laggard cooperates,

it has already ceded the possibility of achieving TAI to the leader in any case. From the

leader’s point of view, the possibility of cheating by the laggard is not that concerning as

long as it can only be done on a small scale. In fact, some cheating could even be bene-

ficial to achieving cooperative equilibria. The ability to cheat a little bit would encourage

laggards to participate in agreements that they otherwise would not, and yet it might not

be so concerning that it prevents the leader from cooperating. Since cheating on a grand

scale would require hiring and resource-acquisition decisions that would likely be visible, the

assumption that players cannot cheat on a grand scale without detection may be reasonable,

and we show below that it is not strictly necessary. Nevertheless, the degree of verifiability
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of agreements that is required for cooperation is an important topic for future research.

A Model of an AI Race

We model the pursuit of AI by two states as a two-player infinitely repeated game with

complete information. Players accumulate basic AI knowledge by investing in research. If

a player accumulates enough knowledge, they make a breakthrough discovery we refer to as

“transformative AI” (TAI).19 In implementing new basic AI technologies for the first time,

a player sometimes causes accidents or other unintended consequences that inflict costs on

both players. Finally, a player with more advanced technology can share some of their

knowledge with the less advanced player.

Moves

At each point in the game, players have a stock of basic AI knowledge (Ai,t ∈ {0, 1, ..} for

each player i in period t). There is a gap G between the players’ initial knowledge levels,

with Player 1 leading (A1,1 − A2,1 = G ≥ 1).20

At the beginning of each period players choose either to invest in research (Ri,t = 1) or

not investing (Ri,t = 0). Players incrementally add to their stocks of basic AI knowledge

through research, but discoveries occur probabilistically. If a player researches, there is a

probability ν ∈ (0, 1) that they make a discovery in that period (Xi,t = 1) and otherwise

their research yields no advances that period (Xi,t = 0). The probability of a discovery is 0

in a period when a player does not research.21

19This term has been defined in very different ways by other scholars. (See Gruetzemacher and Whittlestone

2019 for a review.) We use it here in the very general sense of a technological breakthrough that results in

a qualitative shift in the strategic context.

20Rather than representing all AI technology, this knowledge should be thought of as representing knowledge

in a more particular domain within AI, in which each discovery builds directly on the previous one.

21The assumption that new technological discoveries happen randomly is important because it implies that
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Research can represent direct R&D carried out by a state or R&D by private actors such

as firms. In the latter case, the model would apply to actors whose technology one state

has a comparative in accessing (e.g. through export controls or informal pressure). In either

case, it makes sense to speak of a gap between states in their access to technology.

There is some threshold level of knowledge A at which a player discovers TAI. This

threshold is greater than the leader’s initial knowledge level, but the players do not know

what the threshold is until one of them reaches it. Players share prior beliefs about the value

of A, which for tractability, we assume is a geometric distribution: conditional on the most

advanced player having reached knowledge Ai,t = a without discovering TAI, the probability

that the next discovery will reach the TAI threshold (A = a + 1) is θ ∈ (0, 1). We assume

that TAI represents a qualitative shift: players have no further moves in any periods after

one player reaches the threshold.

In each period that a player researches, there is a probability ϕ ∈ (0, 1) of that player

causing a “failure.” As we discuss in the next section, a failure imposes costs on both players,

not just the one who caused it. Both players can cause failures in the same period and we

assume that failures occur independently. Also, a player can make a beneficial discovery and

cause a failure in the same turn.

Failure events reflect the idea of “failure modes” discussed by machine learning re-

searchers.22 When prototypes are first deployed, they sometimes turn out to cause unantic-

ipated harms to the global economy, international security, the climate, etc. As previously

noted, these harms may come in the form of “accidents,” vulnerability to “misuse,” or “struc-

tural” effects on the global strategic environment (Zwetsloot and Dafoe 2019). The harms

may be due to design flaws, but could also be caused by the manner in which states use a

technology or they way they regulate (or fail to regulate) its use by private actors.

there is a chance for a player who is behind to eventually overtake the player who is currently in the lead

even if both players are researching.

22See, for example Kumar et al. 2019.
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At the end of each period, after the players observe whether either made a discovery

and whether either caused a failure, if one player has accumulated more basic AI knowledge

than the other, that player chooses an amount of knowledge to share with the less advanced

player (Tt). The leader can choose not to share any knowledge (Tt = 0), to share all of their

knowledge (Tt = (Ai,t + Xi,t) − (Aj,t + Xj,t)) or any amount in between. A player in the

lead or tied after research discoveries are revealed in t starts the next period with knowledge

Ai,t+1 = Ai,t +Xi,t, while a lagging player has Aj,t+1 = Aj,t +Xj,t + Tt.

Technology-sharing in the model captures a broad range of ways that states can transfer

technology, whether providing training to scientists in other countries or simply abstaining

from technology export controls. The knowledge can be about not only technical designs,

but also ways of operating the technology safely, or policy approaches to manage its social

risks.

A player bears no failure risk from any knowledge that the other player transfers to them.

This assumption captures the idea sharing technical designs, implementation strategies, and

regulatory approaches the leader has already successfully implemented allows the laggard to

avoid repeating any mistakes the leader made in the process of discovery.

To summarize the sequence of moves in each period:

• Each player chooses whether to research (Ri,t ∈ {0, 1}).

• Players learn whether each has made a discovery (Xi,t ∈ {0, 1}) and whether each has

caused a failure (Fi,t ∈ {0, 1}).

• Players learn whether either player has reached TAI (A = max{Ai,t + Xi,t}) or not

(A > max{Ai,t +Xi,t}).

• If one player has more knowledge than the other (Ai,t +Xi,t > Aj,t +Xj,t), the more

advanced player chooses an amount of knowledge to share (Tt ∈ {0, ..., (Ai,t +Xi,t) −

(Aj,t +Xj,t)}).
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Payoffs

Each player gets a per-period payoff based on their AI knowledge at the beginning of the

period. We follow models in the economics literature in assuming that short-term benefits

increase when a player has more AI knowledge than others do (Budd, Harris and Vickers

1993). Players split the benefit of the knowledge they have in common, while a leading

player gets all the benefit of their extra knowledge that the lagging player lacks. Each unit

of knowledge produces a total benefit α > 0. Suppose that Ai,t ≥ Aj,t. Both players get α/2

from each of the first Aj,t units of knowledge. The leader gets an additional α for each of

the Ai,t − Aj,t units of knowledge that only they have discovered.23

The player who reaches TAI (Ai,t = A) first gets a benefit τ > 0 in each subsequent

period, while the losing player pays a cost κ > 0 each period. (If both players reach the TAI

threshold in the same period, we assume that each has a 50% chance of winning.) Players

therefore have two motives for maintaining a technological lead for two reasons: to get more

benefit from their basic AI knowledge and to get to TAI first. These conflicting interests

represent the idea that having access to innovations in AI allows a state to compete more

effectively with its rivals.

Each player suffers a loss λ > 0 for each failure caused by either player.

A player who invests in research (Ri,t = 1) pays a cost normalized to 1. This cost can

be thought of as representing expenditures on R&D (by the state or companies under its

influence) as well as the expected costs of failures that do not impose externalities on other

states.

Players have a common discount factor δ ∈ (0, 1).

23Players continue to get these payoffs from their cumulative knowledge in each period forever, even after the

race ends.
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Equilibria of the Baseline Model: Racing and Technology-

Sharing

If players do not condition on each other’s past actions, they simply race to develop more

advanced AI. We distinguish two different kinds of races that can occur in equilibrium. In a

Perpetual Race equilibrium, both players invest in research until one of them discovers TAI

(R1,t = R2,t = 1 ∀ t such that A1,t, A2,t < A). In a Limited Race equilibrium, a player will

drop out (permanently) if they fall too far behind. That is, there is some gap g⋆ ≥ 1 such

that, if Ai,t − Aj,t ≥ g⋆, then Rj,t = 0.24

However, if players condition on what has happened in previous periods, there can be

a cooperative equilibrium in which they avoid a race. In such an equilibrium, the leader

shares basic AI technology with the laggard, who in turn refrains from pursuing TAI. Each

period, if the leader discovers a new unit of knowledge (X1,t = 1), they share one unit of

less advanced knowledge with the laggard (Tt = 1), maintaining a constant gap G between

the two players’ knowledge levels.25 The only exception is the final period, when the leader

reaches TAI (X1,t = 1 and A1,t + 1 = A), at which point they do not share their last basic

AI discovery (Tt = 0).

This deal is enforced by a grim trigger. If the leader doesn’t share any technology after

making a discovery (X1,t = 1 and Tt = 0), or if the laggard does any research (R2,t = 1),

then the game enters a race: players play either the Limited or Perpetual Race subgame

equilibrium in every subsequent period.26

24There can also be a “Never Race” equilibrium, in which players don’t research regardless of how far behind

or ahead they are.

25That is, at the beginning of each period, the leader and laggard have respective knowledge levels A1,t and

A2,t, with A1,t = A2,t +G. If the leader makes a discovery, their knowledge level in the next period will be

A1,t+1 = A1,t+1. Since they share a unit of knowledge with the laggard, the latter will have A2,t+1 = A2,t+1.

26For all parameter values, at least one of the three non-cooperative equilibria exists – Perpetual Race, Limited

Race, or the equilibrium in which players never invest. Therefore, in presenting our results from the baseline
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The leader benefits from this cooperative arrangement because they are guaranteed to

reach TAI first, while the laggard benefits by gaining access to a growing stock of knowledge

without having to invest in research themselves. In addition, both players benefit from a

reduction in the expected number of failures, since only the leader is doing research, while

the laggard is only implementing designs that the leader has verified work as intended.27

Mind the Gap: Results of the Baseline Model

Intuition might suggest that a dangerous race can be avoided if one of the competitors is far

enough ahead. Let’s call this idea the Hopeless Laggard effect: If the lagging player is far

enough behind, and so their chance of winning the race is small enough, they would accept a

tech-sharing bargain. If they are even further behind, it isn’t worth it for them to race even

in the absence of a tech-sharing bargain. This Hopeless Laggard effect sometimes happens,

but not always. In our model, we find that, in some cases, a race can only be avoided if the

gap between the players is neither too small nor too big. We call this the Goldilocks effect. In

these cases, the benefits of basic-AI advances are so large that the laggard is always willing

to invest in research, no matter how far behind they are. The leader is only willing make a

technology-sharing deal if the laggard is close enough to pose a credible threat of winning a

race. The laggard would make a deal, rather than try to overtake the leader, as long as they

are not too close.

model, we assume that players always follow one of these non-cooperative equilibria if they do not follow the

tech-sharing equilibrium.

27The essential features of this kind of technology-sharing are that the lagging state gives up its pursuit of

some powerful technology in exchange for assistance from the leader with some other technology, and that

the transfer of technical knowledge from one state to another reduces the shared risks associated with the

technology. In practice, such an agreement might allow a lagging state to do research in related areas, so

long as that research did not bring them too close to the prohibited transformative technology. Indeed, in

the case of the IAEA itself, non-nuclear weapons states can research civilian nuclear technologies, so long as

they do not try to develop nuclear weapons.
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In this section, we present conditions for when a large or a small knowledge gap is

needed to prevent a race. When the benefits from basic-AI advances are small, a race can be

avoided if the gap between the players is large enough (the Hopeless Laggard effect). When

the benefits from basic AI are in a middle range, a race can only be avoided — if at all —

when the gap is in a middle range (the Goldilocks effect). We present sufficient conditions

for the Goldilocks effect. Among these conditions is that the stakes of acquiring TAI must

be sufficiently high. Finally, if the benefits of basic AI are too high relative to the other

parameters, such as the players’ subjective evaluations of the risks of the race, it becomes

impossible to avoid a race, no matter how small or large the gap is.

These results follow from how the benefits of basic AI determine what the players do in

the absence of an agreement. A Perpetual Race only occurs if the benefits of basic AI are so

large that it is worth investing in research even as a player’s probability of winning the race

to TAI approaches zero. For any values of the other parameters, there is always some such

threshold α such that, if the basic-AI benefit is above α, Perpetual Race is an equilibrium,

while below it, Limited Race is an equilibrium.

If the basic-AI payoff is low enough that Limited Race is an equilibrium, the Hopeless

Laggard effect must hold. If the laggard starts off far enough behind, the race will be over

before it’s begun: even though the leader will not share technology, the laggard will not

invest in research.

The Hopeless Laggard effect can hold even if the basic-AI payoff exceeds the threshold

α, so that a Perpetual Race would occur in the absence of a cooperative agreement. The

larger the knowledge gap, the lower the chance that the laggard will ever catch up, which

reduces the leader’s incentive to make a deal. However, the leader has another reason to

make a deal besides guaranteeing their victory in the TAI race: avoiding the spillover costs

of failures the laggard would cause if they researched. If these costs are significant, the leader

can credibly commit to sharing technology despite an arbitrarily large gap. The laggard may

not be willing to make a deal if the gap is small enough to give them a significant shot at
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catching up, but for a large enough gap, they will be willing to cooperate.

By contrast, if the basic-AI payoff is too high relative to the expected cost of failures,

then for some large enough gap the leader would defect to not sharing discoveries. Let us call

the threshold basic-AI payoff above which the leader prefers to defect for a large enough gap

α. If the expected cost of failures is high enough, then α < α: there is a range of basic-AI

payoffs in which a Perpetual Race would occur in the absence of a technology-sharing deal,

but for a large enough gap, both players will agree to a deal.28

If and only if the basic-AI payoff is below either α or α, then the Hopeless Laggard effect

holds. If the basic-AI payoff is higher than both these thresholds, then the Hopeless Laggard

effect does not hold: for all sufficiently large gaps, the equilibrium outcome is a Perpetual

Race.29

Figure 1 illustrates the different equilibrium outcomes that occur when the knowledge

gap becomes very large.30 The Hopeless Laggard effect holds only in the regions where no

race occurs if the gap is sufficiently large. In the “No Race, No Sharing” region, the basic-AI

payoff is low enough that the laggard doesn’t race if they are far enough behind, even though

the leader does not share technology. For basic-AI payoffs above the “No Race, No Sharing”

region, no matter how large the gap in players’ knowledge levels, the laggard prefers to race if

the leader does not share technology. In the “No Race, Sharing” region, the basic-AI payoff

is nonetheless low enough relative to the high expected cost of failures that the leader shares

technology to keep the laggard from conducting research. In the “Race” region, the basic-AI

payoff is so high that the leader can’t commit to sharing technology, so both players carry

28The pace of discoveries (ν) must also be high enough for this range to exist.

29For low expected failure costs, the first threshold is binding: a large gap can only prevent a race if the benefits

of basic AI alone do not justify investment for a laggard who is too far behind. For higher expected failure

costs, the second threshold is binding: a large gap can prevent a race if either a distant laggard wouldn’t

race or a distant laggard would race but the leader would share technology.

30This figure holds fixed δ = 0.95 and ν = 0.25.
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Figure 1: Equilibrium outcome for large knowledge gaps

out research, resulting in a Perpetual Race.31

Proposition 1 provides the necessary and sufficient condition for the Hopeless Laggard

effect. The proposition highlights the importance of the returns from basic AI. When these

returns are low, the players can avoid dangerous races when one is sufficiently ahead. The

method of avoiding the race could be either through a sharing agreement or through the

31The threshold α is the upper bound of the “No Race, No Sharing” region, and it is upward sloping because

the higher the expected cost of failures, the more valuable advances must be for a distant laggard to invest

in research perpetually. The threshold α is the upper bound of the “No Race, Sharing” region. It slopes

upward because the higher the expected cost of failures, the greater the cost to the leader of triggering a

race by defecting.
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laggard unilaterally dropping out.32

Proposition 1 (Hopeless Laggard Effect):

There is a threshold α⋆ > 0 such that, if and only if the benefit of each basic-AI advance

(α) is at most α⋆, then there is a threshold G ≥ 1 such that, if the initial gap (G) is at least

G, there exists an equilibrium in which the lagging player never researches (R2,t = 0 for all

periods t).

If, on the other hand, the basic-AI payoff is so large that the Hopeless Laggard effect

doesn’t hold, it may nonetheless be possible to avoid a race if the gap is not too large. In a

close race, the leader may be willing to make a technology-sharing bargain because the chance

of the laggard overtaking them is very high. Depending on the other parameters, there may

be a middle range in which the gap is small enough that the leader would cooperate and

large enough that the laggard will cooperate too. This is the Goldilocks effect mentioned

above.33

Figure 2 illustrates a case where the Goldilocks effect is in operation.34 Each line repre-

sents the difference between a player’s expected utility from cooperating and their expected

utility if they defect, triggering a race. If the difference is positive, the player would coop-

erate; if it’s negative, they prefer to defect. The leader’s relative payoff from cooperating

declines as the gap between the players increases: as the leader becomes more likely to get

to TAI first even if a race occurs, cooperation becomes less appealing. The reverse is true

for the laggard, whose relative payoff from cooperating increases in the gap size. When the

32We present and prove a full statement of Proposition 1 in Online Appendix A.1.

33There are cases where cooperation is possible even if the laggard is only one unit of knowledge behind. In

particular, such cases occur when the stakes of TAI are in a middle range. However, the implication that any

small enough gap is sufficient for cooperation in such cases may be an artifact of using discrete knowledge

levels. If we were to model knowledge levels as continuous, we might find that there is always some range of

gaps close to zero at which the laggard would be unwilling to cooperate.

34This figure holds fixed δ = 0.95, ν = 0.4, θ = 0.1, λϕ = 0.25, α = 0.9, τ = 1, and κ = 4.
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Figure 2: Incentive to cooperate by player (high-stakes TAI)

knowledge gap is 2, both players would cooperate. If the gap is only 1, the laggard would

defect. If the gap is 3 or more, the leader would defect.35

A second proposition summarizes a set of sufficient conditions for the Goldilocks effect:36

Proposition 2 (Goldilocks Effect): If the following conditions are true:

• the probability of making a basic-AI discovery each period (ν) is high enough

35For some other parameter values, the middle range in which cooperation is possible includes more than one

gap size.

36In Online Appendix A.2, we present a full statement of Proposition 2 and explain how we derived it on

the basis of the results established in Proposition 1 and numeric computations. We describe our numerical

methods in Online Appendix B.
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• the basic-AI payoff (α) is in a middle range, the lower bound of which is at least α⋆

• the probability that any given discovery leads to TAI (θ) is low enough

• the stakes of the race for TAI (τ + κ) are high enough

then there is some range of gap sizes defined by 1 ≤ G′ ≤ G′′ such that:

• if the initial gap G ∈ {G′, ..., G′′}, the tech-sharing equilibrium exists

• and otherwise, the tech-sharing equilibrium does not exist and a Perpetual Race occurs

(R1,t = R2,t = 1 in all periods t until one player discovers TAI).

There is an upper bound on the basic-AI benefit because both players’ incentives to defect

are increasing in that parameter. The higher the basic-AI benefit, the smaller the range of

knowledge gaps in which both players would cooperate. If it is too high, there is no gap at

which both players will cooperate.

The last condition, about the benefit of winning and cost of losing the TAI race, is

perhaps the most surprising. Why would raising the stakes of TAI improve the feasibility

of cooperation? A key point for understanding this result is that there is always some gap

at which the laggard would cooperate. As the gap gets bigger and their chance of catching

up approaches zero, they would be strictly better off in expectation receiving technology

from the leader, rather than bearing the costs (from investment and additional failures) of

making advances for themselves. Given the lower bound on the basic-AI payoff, the leader

will only cooperate if the gap is small enough. The bigger the difference between the payoffs

of winning and losing the race to TAI, the higher the maximum gap at which the leader

would cooperate. If the TAI stakes are large enough, the range of gap sizes in which the

leader would cooperate overlaps the range in which the laggard would cooperate.

Figure 3 is analogous to Figure 2, but with a much smaller difference in payoffs between
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Figure 3: The players cannot cooperate through sharing because TAI is low stakes

winning and losing the race for TAI.37 With the stakes of TAI lowered, the laggard has less to

gain from racing and would cede TAI to the leader no matter how small the gap is. However,

a race has become less costly for the leader, and so no matter how small the gap, they prefer

to defect and not share any discoveries they make.

In short, when the stakes of TAI are high enough and the benefits of basic AI are in a

middle range, the players can only avoid a race if the knowledge gap is small enough.

37This figure holds the parameters fixed at the same values as Figure 2 except that the cost of losing the race

to TAI is lower: κ = 1.
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Extensions

Incomplete Information

A simplifying assumption of our model is that actors have complete information. In the

real world, it may be difficult for rival companies, states, or other competitors to monitor

each other’s research activities or discoveries. The laggard might cheat on the agreement

by secretly carrying out research or the leader might cheat by concealing their technological

advances rather than sharing them with the laggard. If either actor had significant doubts

about their ability to monitor the other, they might be unable to agree to an otherwise

mutually beneficial technology-sharing agreement.

Such difficulties with monitoring compliance would certainly make a technology-sharing

bargain more difficult in practice. However, we analyzed two extensions of the model with

incomplete information and found that technology sharing can be feasible even in the absence

of perfect monitoring.

In the Hidden Research extension, the laggard has the option of carrying out research in

secret, so the leader cannot monitor the laggard’s compliance with the technology-sharing

deal. If their research goes well, they can potentially beat the leader to TAI, and if it

does not, they continues to receive technology from the leader, ensuring that they never fall

further behind than they were when the agreement began.

We assume that making extensive use of any knowledge they have acquired that the leader

has not yet shared with them would be observable, so the laggard can choose temporarily

to not deploy those discoveries. Thus, while their research is hidden, they do not get any

benefit from their knowledge beyond the level the leader has shared. Once they choose to

carry out their research openly, they receive the full benefits of their knowledge. There is

still a risk, however, that the laggard will cause a failure when they test new discoveries, and

if a failure happens, the leader infers that the laggard was carrying out research, triggering
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the end of the technology-sharing agreement.38

Through numerical computation, we find that there are indeed some parameter values

for which the laggard can profitably cheat in this way. Anticipating that the laggard will

cheat, the leader will not agree to share technology in the first place. So, there are some

cases where technology sharing is possible in the baseline model but not in this extension.

However, we find that there are other parameter values for which the laggard cannot gain

from secretly researching, so a technology-sharing agreement can be possible even when the

leader is unable to verify that the laggard is not conducting research. For instance, if in

expectation it will take many periods to reach TAI, or if failures are very likely or costly, the

possibility of winning the TAI race is outweighed by the cost of investment and increased

failure risk.39

We also analyze a Hidden Discoveries extension, in which the laggard cannot observe

whether the leader is complying with the deal. Specifically, the laggard does not observe

whether the leader makes a discovery each period. The exact technology-sharing arrangement

we analyze in the baseline model is clearly not feasible in this version of the model, since the

laggard cannot condition on whether the leader shares an old technology every time they

make a new discovery. Instead, we check the existence of an equilibrium in which the leader

shares one unit of technological knowledge with the laggard every K periods. If the leader

38We assume that the probability and cost of a failure is the same when the laggard is secretly testing new

designs as when players openly implement them for the first time. It might be more realistic to assume that

the risks are smaller since the laggard would presumably have to conduct testing on a smaller scale if they

are to keep it secret. However, relaxing our assumptions in this way shouldn’t qualitatively effect the result,

because the laggard would still have to tradeoff the chance of overtaking the leader with the cost of investing

in research and at least some increased failure risk. Indeed, even if there was no chance of causing a failure

while conducting secret research and therefore no chance of getting caught, for some parameter values the

laggard would still be better off giving up their shot at TAI in order to avoid paying for their own research,

since they will receive the leader’s basic AI discoveries either way.

39See Online Appendix C.1 for a formal description of the model and our numerical methods for analyzing it.
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ever fails to transfer a unit of technology in a scheduled period or if the laggard ever carries

out research, the bargain ends and the players follow whichever non-cooperative subgame

equilibrium exists.

Since discoveries are stochastic and the leader may make more than one discovery in any

given K periods or make none, the gap may grow or widen over time. As a result, there is

always a chance that the deal will collapse. The gap can close completely as a result of the

leader failing to make discoveries in multiple periods. If there is no gap in a period when

the erstwhile leader is scheduled to transfer technology to the other player, they will not

have any technology to share that the laggard doesn’t already have. Because the laggard

can’t observe whether the leader has been making discoveries, if the leader does not share

technology, the laggard can’t tell whether the leader is reneging or has simply been unlucky.

Nonetheless, we find that this kind of technology-sharing agreement is an equilibrium for

some parameter values. Numerical analysis suggests that a tech-sharing equilibrium exists

as long as the probability and benefits of each basic-AI discovery are in a middle range and

the probability of any given discovery leading to TAI is sufficiently low. Thus, both of these

extensions provide a strong test for the feasibility of tech-sharing agreements: in each one,

monitoring is not just imperfect, but non-existent for one of the players.40

Wealth Transfers

So far, we have only considered one way that competitors could avoid a race: by sharing

technology. In practice, there are other agreements they might strike. One possibility is that

the leader might simply pay the laggard not to research, without transferring technology.41

Such a solution would be more robust against unanticipated events that might motivate the

laggard to rejoin the race. As the technological gap between leader and laggard grows, the

40See Online Appendix C.2 for a formal description of the model and our numerical methods for analyzing it.

41Another way the leader might compensate the laggard would be to allow them to use the technology without

sharing the knowledge of how the technology works, e.g. through an API.
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risk of a race breaking out would decline.

We created an extended version of the model in which the leader can transfer wealth,

rather than technology, to the laggard in exchange for the laggard refraining from research.

We find that a wealth-sharing agreement is indeed self-enforcing for some parameter val-

ues. There are cases in which both a technology-sharing agreement and a wealth-sharing

agreement are feasible, but there are also cases in which only a wealth-sharing agreement is

feasible.

However, we also find cases in which a technology-sharing agreement is possible, but a

wealth-sharing agreement is not. Because the technology gap grows under a wealth-sharing

agreement, the prospect of a race becomes less costly to the leader and so the maximum

payment they would make steadily declines. If a Limited Race is a subgame equilibrium,

the leader could eventually stop making payments altogether without triggering a race, and

so the laggard would have an incentive to defect and begin racing before the gap reached

that point.42 Anticipating the laggard’s defection, the leader would defect when the gap was

even smaller, and so on, so that players would not agree to the deal in the first place in

equilibrium.43

These cases, in which tech-sharing agreements are feasible but wealth-sharing agreements

are not, occur when advances in basic AI occur rapidly but the discovery of TAI is a long way

off in expectation. Wealth-sharing deals unravel if the probability of a discovery each period

is too high, because the laggard anticipates with a high degree of confidence when the gap is

about to widen to the point where the leader would stop making payouts. Because a rapid

42However, even when the non-cooperative equilibrium is a Limited Race, a wealth-sharing agreement can still

be feasible if discoveries occur with a low probability, so that even when the leader is just one unit away from

stopping transfers, the payments continues for such a long time in expectation that the laggard wouldn’t

want to defect.

43There are also cases in which a wealth-sharing equilibrium exists but the leader eventually stops paying even

though the resulting race is perpetual. In these cases, while a technology-sharing agreement could guarantee

that the laggard would never race, a wealth-sharing agreement could not.
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pace of basic AI discoveries does not affect the gap between the players under a technology-

sharing agreement, the laggard would cooperate so long as the probability that any one

discovery leads to TAI is low, because the agreement lasts a long time in expectation.44

The NPT: A Case Study

The fact that there are only nine nuclear weapons states today — rather than the dozens

Kennedy warned of — is likely in part due to the global nuclear nonproliferation regime that

is centered around the Treaty on the Non-Proliferation of Nuclear Weapons. Also known as

the Nuclear Non-Proliferation Treaty (NPT), this international agreement was a technology-

sharing bargain in which nuclear-armed states provided civilian nuclear technology to other

states, and the latter agreed in turn not to acquire nuclear weapons themselves.45 The case

confirms that dynamics similar to those described in the model can be important elements

in the governance of dangerous new technologies. It also demonstrates that such trades can

be necessary to convince states to give up the pursuit of a powerful technology. Technology

sharing was acceptable to the US and Soviets because some states were close to acquiring

nuclear technology. It was acceptable to those other states because they got things in return,

including civilian nuclear technology and security guarantees. The deal thus reconciled the

goals of (1) enabling less technologically-advanced powers to reap the benefits of civilian

nuclear energy technology, (2) reducing the global risks of nuclear energy programs, and (3)

discouraging beneficiary states from pursuing nuclear weapons.

Some scholars reject the idea that the NPT was meant to be a bargain to trade civilian

nuclear tech for giving up nuclear weapons. Swango (2014) argues that when the United

States ratified the treaty in 1968, it was not committed to providing assistance to states

44See Online Appendix D for a formal description of the model and our numerical methods for analyzing it.

45Müller 2005; Cirincione 2007; Findlay 2012 The NPT requires NWS themselves to give up nuclear weapons

eventually, albeit without specifying a timeframe. However, possible limitations on states’ use of an advanced

tech (represented by TAI in our model) is beyond the scope of our model.
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that renounced nuclear weapons. At the same time, the US was willing to share nuclear

technology with some states that remained outside the NPT. We show, however, that the

promise of civilian nuclear assistance and cooperation was essential to the selling of the

agreement to the powers who would be denied the possibility of pursuing nuclear weapons.

Civilian and military applications of nuclear science play a similar role to basic and

transformative AI, respectively, in our model. This is so for several reasons. First, nuclear

technology is dual-use: the technical knowledge required in nuclear energy and other civilian

applications can also make it easier for a state to develop nuclear weapons.46 Second, even

the civilian applications of nuclear technology pose risks that spill across borders, from

accidents to the theft of nuclear material by terrorist groups,47 risks that are heightened if

states do not have access to lessons learned from others’ experience.48 Third, since much of

even civilian nuclear technology is not publicly available, we can meaningful speak of gaps

between different states in terms of their access to advanced nuclear technology.49

There are also some differences between the nuclear case and the strategic context we

describe in the model. A significant one is that, unlike TAI in our model, nuclear weapons

technology already existed at the time that the NPT was created. This is essentially a

simplification of the modeling context in which the leader achieves the major advance (TAI)

immediately; the fundamental strategic dynamics are similar. Another difference between

the case and model is in the number of actors. While our model is a two-player game, the

NPT is a global multilateral agreement. However, it codifies a bargain between two groups:

the original five nuclear weapons states (NWS) and the world’s many more non-nuclear

weapons states (NNWS). Larger numbers of states add complexity, but we believe that some

fundamental strategic problems are evident in both contexts.

46Müller 2005; Pilat and Busch 2015

47Pilat and Busch 2015; Findlay 2011

48Findlay 2011; Taebi and Mayer 2017

49Kroenig 2009
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The NPT emerged from negotiations between the United States and the Soviet Union

aimed at limiting the spread of nuclear weapons to other countries.50 The two superpow-

ers reached agreement by the end of 1966 that the treaty should prohibit the transfer of

nuclear weapons technology to any states that did not already have it.51 However, many

of the NNWS objected to the two-tiered system this proposed treaty enshrined: a perma-

nent division between the nuclear weapon “haves” (the US, the USSR, the United Kingdom,

France, and China) and “have-nots” (the rest of the world).52 Swango (2014, 211) — who,

as noted earlier, rejects the claim that the NPT can be seen as a technology-sharing bargain

— remarks: “Non-aligned states and the superpowers’ own allies argued they could not join

a discriminatory system that permitted the superpowers to possess nuclear weapons unless

they received something in exchange for adhering.”

Among the countries objecting to the US-Soviet draft treaty were several nations that a

1958 US National Intelligence Estimate judged to be capable of developing nuclear weapons

within a decade.53 Getting such countries to join the NPT was a “particular concern for the

superpowers,” but these close laggards “realized that signing the treaty could have economic

and security drawbacks” and insisted that the treaty guarantee their access to “nuclear

technology for peaceful purposes” (Hilborne 2012, 254).

In response to the demands of the NNWS, Washington and Moscow revised the NPT,

starting in the second half of 1967. The UN General Assembly approved the final version

of the treaty in June 1968 only after two further articles had been added guaranteeing, as

Bourantonis (1997, 356) summarizes, “the sharing of benefits from the peaceful application

of nuclear energy” with states that agreed not to pursue nuclear weapons. Articles III

50Cirincione 2007, 30

51Goldschmidt 1980, 75

52Müller 2005, 46 Glenn Seaborg, a former chair of the US Atomic Energy Commission later observed: “The

non-nuclear countries were not about to accept without resistance a pact that they believed to be highly

discriminatory against them” (quoted in Cirincione 2007, 31).

53Goldschmidt 1980, 74; Cirincione 2007, 27
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and IV not only permitted NNWS to engage in civilian nuclear activities but explicitly

ensured the transfer of knowledge related to civilian nuclear technology. While the NNWS

had to submit to verification by the IAEA that they were not developing nuclear bombs,

Article III required that the verification measures must “avoid hampering the economic or

technological development of the Parties or international co-operation in the field of peaceful

nuclear activities.” Article IV creates a positive obligation of signatories to share peaceful

nuclear technology: “All the Parties to the Treaty undertake to facilitate, and have the right

to participate in, the fullest possible exchange of equipment, materials and scientific and

technological information for the peaceful uses of nuclear energy.”54 Whereas the original

US-Soviet negotiations focused exclusively on banning the proliferation of nuclear weapons,

“It was not until the rest of the world got involved with the negotiations that its most

contentious provisions — those calling for sharing nuclear technology for peaceful purposes

and for the gradual elimination of the nuclear weapon states’ arsenals — were debated and

finally accepted.”55

Assessing the overall impact of the NPT on nuclear proliferation is complex. Some

evidence suggests that states which receive technical assistance with civilian nuclear activities

are more likely to pursue and ultimately acquire nuclear weapons.56 However, one of these

studies also shows that signing up for the NPT reduces the chances states will start a

nuclear weapons program.57 And Gibbons (2020, 282) finds that it is precisely the prospect

of receiving civilian nuclear technology that has persuaded some states to join the NPT,

because: “After the risks of nuclear assistance became well-known following India’s nuclear

explosion in 1974, most major suppliers conditioned their assistance on recipients joining

nonproliferation agreements.” Whether or not the US intended, at the time of the NPT’s

54The text of the NPT is available at: www.un.org/disarmament/wmd/nuclear/npt/text

55Cirincione 2007, 30

56Kroenig 2009; Fuhrmann 2009; Brown and Kaplow 2014

57Fuhrmann 2009
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ratification, to use civilian nuclear assistance to induce individual states to join the treaty,

the offer of such assistance seems to have been crucial to both the passage of the the treaty

and the large number of states that subsequently joined it.

Thus, like the players in the technology-sharing equilibrium of our model, the signatories

of the NPT know that NNWS could use their knowledge of civilian nuclear technology

to pursue a weapons program.58 But they calculate that most NNWS will have a strong

incentive not to jeopardize their continued access to peaceful nuclear technology — and that

many of them would pursue weapons in the absence of such assistance and cooperation.

Information sharing with the NNWS serves a second purpose beyond inducing states to

renounce nuclear weapons: it improves the safety and security of nuclear facilities, reducing

risks that spill across borders. In the last three decades the IAEA has played a growing role

in providing that assistance, advising states on preventing accidents at nuclear reactors and

securing nuclear fuel against theft.59 In particular, the IAEA’s Global Nuclear Safety and

Security Network supports “the transfer of knowledge from countries with mature nuclear en-

ergy programmes to countries that have only just started to embark on such programmes.”60

As in our model, knowledge-sharing under the nuclear non-proliferation regime reduces the

global risks of nuclear energy production in less developed countries.

The NPT case illustrates how the results of our model can occur in practice. A bargain

to share one kind of technology can prevent competition for another, related technology. The

negotiations that led to the NPT also illustrate the Goldilocks Effect. The nuclear-armed

powers were willing to concede civilian nuclear assistance because several states posed a

58A 2004 UN report notes: “Almost 60 states currently operate or are constructing nuclear power or research

reactors, and at least 40 possess the industrial and scientific infrastructure which would enable them, if they

chose, to build nuclear weapons at relatively short notice if the legal and normative constraints of the Treaty

regime no longer apply” (emphasis added; quoted in Cirincione 2007, 106).

59Findlay 2011; Taebi and Mayer 2017

60International Atomic Energy Agency, “Global Nuclear Safety and Security Network (GNSSN)”, accessed

May 20, 2022, https://www.iaea.org/services/networks/global-nuclear-safety-and-security-network
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credible threat of developing their own atomic weapons in the near future. Most of the

non-nuclear-armed countries were willing to join the NPT because they were not too close

and assistance with nuclear energy was a valuable inducement.

Discussion

For most of the Cold War, the United States and the Soviet Union continued to deploy

increasing numbers of nuclear warheads atop intercontinental ballistic missiles. In the late

1980s, this nearly continuous increase was replaced by a nearly continuous decline on both

sides. This change coincided with an agreement between the sides, the Strategic Arms

Reduction Treaty (START I), which was negotiated in the 1980s and signed by George H. W.

Bush and Mikhail Gorbachev in 1991. How far did the sides reduce their arsenals of deployed

weapons? Down to about 6,000 on each side, the number allowed by the treaty. Agreements

have an important role to play in arms control, but the strategic context determines which

can be self-enforcing in the absence of a common governing authority. The results of the

models presented here confirm that even in the highly adversarial context of technology

competition, and even without the mitigating factor of the decreasing returns from weapons

technology investment in the nuclear race, agreements between adversaries that reduce the

level of arms or technology competition are possible.

These results contrast with those that derive from static race models. The role of infor-

mation about each other’s behavior, for instance, is different. Dynamic models allow agents

the possibility of punishing adversaries who fail to adhere to agreements. Implementing such

strategies requires a certain amount of information, and this implies that information can

play a welfare-increasing role that is absent from static models. While perfect information is

not required for cooperative equilibria, the absence of any expectations about an adversary’s

behavior precludes agreements that require conditioning on it.

Another conceptual issue, however, is whether the actors know exactly what is required to
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achieve TAI. This sort of information is subtly different from knowledge of relative position in

the search for TAI. The welfare decreasing effect of information in the Armstrong, Bostrom

and Shulman 2016 model, for instance, comes not from information about relative position

directly, but from the heightened competition that erupts when actors know exactly what

they need to do to outdo each other, and from the assumption that doing slightly more

leads to all the benefits with certainty. At least in the near term, however, since it remains

unknown what is required to produce TAI, this seems not to be a faithful representation

of the strategic context. This is another reason to expect information about actors’ actions

and knowledge to have a more beneficial effect, at least in the short term when actors do

not know the precise set of steps required for TAI.

Such static models, and dynamic models that are analyzed through Markov perfect equi-

libria, place the emphasis on the material strategic context. The dynamic game that we

analyze puts the emphasis instead on the social world that actors could create. It allows

us to ask what agreements would be self-enforcing in the absence of a common authority to

compel compliance.

We stated at the outset that this paper would provide a baseline model, and indeed,

there are many extensions that would be useful for understanding these dynamics. We

might analyze larger numbers of players or the dynamics of a model with the possibility

of conflict or sabotage. One could also study the degree of resource investment in order

to understand, for instance, how investment changes as players are closer and farther from

each other in the AI knowledge race (Bimpikis, Ehsani and Mostagir 2019), and how this

impacts safety dynamics. One could study learning dynamics as players observe aspects of

each other’s progress, such as how players might be given an incentive to invest or not based

on other players’ success. Innovations may provide investment and racing incentive because

they represent proof of the possible. This modeling direction would enable the generation of

hypotheses about when to expect secrecy versus product development that employs recent

innovations.
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A promising direction for future work is to model a tradeoff between advancing quickly

and advancing safely. This research direction includes models of NGO, governmental, and

intergovernmental actors who seek to increase race safety. Such actors may have the para-

doxical problem of not being able to credibly threaten to take actions that risk safety. They

may not wish, for instance, to threaten to race unsafely themselves unless other actors race

safely. On the other hand, in a situation with multiple potential racers, an altruistic actor

could offer to help the safest actor with the goal of influencing the behavior of all. In the

best-case equilibrium, the threat from the altruistic actor would deter other actors from

racing unsafely without the altruistic actor even having to commit any resources at all. The

threat of committing resources if another actor deviated could be enough. This would mirror

some models of lobbying in which lobbyists achieve their objectives without committing any

funds — because of the threat to fund political adversaries. How these dynamics would

interact with different relative positions in the research race is something for modeling to

investigate.

Although considerations about the social and global risks of advanced technologies to

societies at large motivate this study, our model only allows direct analysis of the welfare

of the potential participants in a technology race. The balance of the benefits and risks to

societies is likely to vary considerably across different applications of AI, not to mention

other advanced technologies, and has crucial implications for whether a technology-sharing

agreement that is mutually beneficial to its participants would be in the interests of affected

third parties. For the most dangerous technologies, such agreements may not go far enough:

a total ban on research in some areas may be preferable for humanity as a whole. For other

technologies, the benefits to third parties may be so large that an agreement which reduces

competition and delays advances in expectation may be detrimental to global welfare.
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Conclusion

Some interesting policy considerations derive from the results of the model presented above.

For instance, partial sharing of technology may be a tool to prevent more dangerous forms

of proliferation. Intergovernmental organizations or other third-party actors could facilitate

technology-sharing bargains between states by creating an institution that serves the function

of the International Atomic Energy Agency. Such an institution would share knowledge with

certain states in return for commitments not to engage in proscribed research, development,

implementation and use. They could also help to compel behavior through sanctions regimes

similar to those in place in the nuclear field to prevent the spread of technologies. This is

useful not just because of the direct effect of limiting the spread of dangerous technologies,

but also because it preserves the value of sharing those technologies in return for actions

that increase public welfare.61

The analysis here does not lead to firm policy conclusions, however. In spite of our

findings that perfect information is not required for sharing equilibria, some capacity for

compliance verification — or at least detection of cheating on a grand scale — will often be

beneficial, even necessary, in the real world. Some actors will be willing to take on more risk

that adversaries are cheating. As in the nuclear non-proliferation regime, minor powers under

a major power’s nuclear umbrella will take risks in forgoing technological development that

major powers themselves would not. The right policy approaches for different technologies

may vary, and they on the balance of benefits and risks to global welfare, not only to the

particular governments competing most fiercely over it.

Contemporary political discourse and popular media often frame AI research as an in-

evitably cutthroat race for global dominance. That rhetoric runs the risk of becoming a

61While the scope for imposing rules on major powers is limited, international institutions can reduce the

transaction costs of agreements between states, making it worthwhile for them to enter into technology-

sharing agreements that would not otherwise be feasible (Keohane and Martin 1995).

36



self-fulfilling prophecy.62 Our findings provide reason for optimism that nations can find

ways to reduce conflict in their pursuit of advanced AI. At the same time, those findings

demonstrate why we cannot take such cooperation for granted.

62Scharre 2019; Sherman 2019; Kerry et al. 2021
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