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The shift from scaling up the compute used to pre-train AI systems (pre-training 
compute) to scaling up the amount used to run them (inference compute) may have 
profound effects on AI governance. The nature of these effects depends crucially on 
whether this new inference compute will primarily be used to improve model 
performance during external deployment or as part of a more complex training 
programme within the lab. Rapid scaling of inference-at-deployment would somewhat 
lower the importance of open-weight models (and of securing the weights of closed 
models), reduce the impact of the first human-level models, change the business model 
for frontier AI, reduce the need for power-intensive data centres, and potentially 
undermine AI governance measures that rely on training-compute thresholds. Rapid 
scaling of inference-during-training would have more ambiguous effects that range 
from a revitalisation of pre-training scaling to a form of recursive self-improvement via 
iterated distillation and amplification. 

This work represents the views of its authors, rather than the views of the organisation, and does not constitute legal advice. ​
GovAI technical reports have received extensive feedback, but have not gone through formal peer review.  

Introduction 

For years, AI progress has followed a predictable pattern: use more computing power to build 
bigger models, and performance improves accordingly. But recent developments suggest this 
era may be ending. AI progress is increasingly driven by scaling up inference compute: the 
amount of computing power a model of a given size can use to respond to a user’s prompt.  

The implications of inference scaling depend on whether AI developers focus more on scaling 
inference-at-deployment or inference-during-training. Scaling inference-at-deployment 
refers to the use of additional computational resources when serving a request. Scaling 
inference-during-training refers to a developer scaling up the inference used to complete 
some task, thus improving the model’s performance, and then using the resulting data to train 
models.  

If labs invest more of their resources scaling inference-at-deployment, this may:  
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●​ Reduce the number of simultaneously served copies of each new model. If model 
performance relies on increased inference compute, each model copy would require 
more compute to run. 

●​ Increase the cost of the first human-level AI systems. If inference compute drives 
performance, then the highest-performing system could use many orders of 
magnitude more than less-performant ones. 

●​ Somewhat reduce the value of securing model weights. If performance gains are 
derived at inference, then it matters less who has the model weights and more who 
obtains inference compute.  

●​ Somewhat reduce the benefits and risks of open-weight models. If inference matters 
more for performance, open-weight models on their own matter less for both benefits 
and risks of AI.  

●​ Allow unequal performance for different tasks and for different users. When 
inference drives performance, those with access to greater compute resources will 
have a more performant system. 

●​ Change the business model and industry structure. Greater reliance on inference 
compute would increase marginal costs for the AI industry.  

●​ Reduce the need for monolithic data centres. Inference compute does not require the 
type of large, centralized computing infrastructure needed for big pre-training runs.   

●​ Complicate the strategy of AI governance via compute thresholds. As inference 
drives performance, compute thresholds may become less useful for triggering greater 
scrutiny and safeguards.  

If companies instead focus on using inference compute during training, the consequences are 
less clear. This may lead to: 

●​ Less transparency about state-of-the-art models. If labs scale 
inference-during-training, policymakers may have less insight into model capabilities, 
reducing readiness for advanced AI.  

●​ Shorter timelines to transformative AGI. Iterated distillation may speed up progress 
toward AGI.  

Next, I explain why I think we should consider the shift to inference scaling as a new 
paradigm, rather than a simple continuation of the familiar scaling era. Then, I examine how 
scaling inference-at-deployment could reshape the AI landscape, affecting everything from 
business models to regulatory frameworks. Finally, I consider the implications of scaling 
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inference-during-training, which could accelerate AI development in unexpected ways while 
reducing transparency into the most advanced systems. Throughout, I assess what these 
changes mean for policymakers seeking to govern AI systems effectively. 

The end of an era – for both training and governance 

The intense year-on-year scaling up of AI training runs has been one of the most dramatic and 
stable markers of the large language model (LLM) era. Indeed, it has been widely taken to be a 
permanent fixture of the AI landscape and the basis of many approaches to AI governance. 

To date, researchers have found that AI systems tend to develop new capabilities with relative 
predictability as the models are trained using more computing power (“compute”) and data. 
This trend, known as “scaling,” was also useful for policymakers. As performance increased 
with computing power, governance mechanisms could focus on the most capable models at 
the “frontier” by using computing power as a proxy for performance. Because concerning 
capabilities are likely to emerge in the most capable models, governance mechanisms could 
look to computing-power thresholds (“compute thresholds”) as a way to identify systems of 
concern, while limiting impacts on parts of the AI industry that fall below those thresholds. 
Researchers and policymakers could use the amount of compute used to train a model in 
order to define the scope of the rules and oversight mechanisms that apply to AI development. 
Researchers have fiercely debated the utility of using compute thresholds in this matter,1 but 
in the absence of a viable alternative, compute thresholds have emerged as an important tool 
in AI governance.  

Major regulatory efforts have built directly on these assumptions. The EU AI Act uses a 
threshold based on training compute – specifically 1025 floating point operations (FLOPs) – to 
define “general purpose AI systems with systemic risk”, which face additional requirements. 
The Biden administration’s (now rescinded) Executive Order on Artificial Intelligence required 
companies to report information about models trained using more than 1026 FLOPs, and 
California’s recently enacted AI safety law relies on a compute (and revenue) threshold to 
identify firms subject to transparency requirements.  

The Shift to Inference Scaling 

Recent developments, though, suggest that these assumptions may be breaking down. Reports 
from leading labs,2 supported by evidence about the capabilities of recent AI systems,3 claim 

3 Nathan Lambert, “GPT-4.5: ‘Not a Frontier Model’?,” Interconnects, November 24, 2023, 
https://www.interconnects.ai/p/gpt-45-not-a-frontier-model. 

2 Stephanie Palazzolo et al., “OpenAI Shifts Strategy as Rate of ‘GPT’ AI Improvements Slows,” The Information, November 9, 
2024, https://www.theinformation.com/articles/openai-shifts-strategy-as-rate-of-gpt-ai-improvements-slows. 

1 Lennart Heim and Leonie Koessler, “Training Compute Thresholds: Features and Functions in AI Regulation,” 
arXiv:2405.10799, August 6, 2024, https://doi.org/10.48550/arXiv.2405.10799; Sara Hooker, “On the Limitations of Compute 
Thresholds as a Governance Strategy,” arXiv:2407.05694, July 30, 2024, https://doi.org/10.48550/arXiv.2407.05694. 
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that building bigger models – or scaling pre-training – substantially larger than GPT-4 has led 
to only modest gains in practical utility.4 A possible reason for the slowdown in performance 
increases is that AI developers are running out of high-quality training data. While the scaling 
laws which predict how model performance improves with more data and compute might still 
be operating, the ability to harness them through rapid scaling of pre-training may not be. 
What was taken to be a fixture may instead have been just one important era in the history of 
AI development, an era which is now coming to a close. 

 

Figure 1. Reported model performance vs. increased compute of OpenAI’s o1 system. The left chart 
shows the model’s performance improving as a result of additional post-training reinforcement 
learning. The right chart shows performance improving as a result of increasing the amount of 
inference compute after deployment (Source: OpenAI, see footnote 5). 

What will come next? Just before the reports of these difficulties emerged, OpenAI announced 
o1,5 a breakthrough “reasoning” model that illustrated how labs are relying on techniques 
beyond scaling pre-training to deliver performance. Their announcement included a chart 
(Figure 1) showing how the model’s performance on a difficult mathematics benchmark could 
be improved by increasing compute in two ways. The first was by dedicating more compute to 
post-training reinforcement learning (in which the model is fine-tuned through feedback to 
improve its overall performance); the second was by increasing the inference compute used 
on the current task (giving the model more computational resources to generate each 
response). 

5 OpenAI, “Learning to Reason with LLMs,” September 12, 2024, https://openai.com/index/learning-to-reason-with-llms/. 

4 Maxwell Zeff, “Current AI Scaling Laws Are Showing Diminishing Returns, Forcing AI Labs to Change Course,” Techcrunch, 
November 20, 2024, 
https://techcrunch.com/2024/11/20/ai-scaling-laws-are-showing-diminishing-returns-forcing-ai-labs-to-change-course/. 
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As Figure 1 shows, OpenAI claimed that using more inference compute led to impressive gains 
in model performance. Similarly, work on the trade-off between pre-training compute and 
inference compute suggests that, on the current margins, increasing inference compute on 
the task at hand by a factor of 10 can improve performance as much as increasing pre-training 
compute by 3–10x, with performance gains often plateauing after scaling up 
inference-at-deployment by a few orders of magnitude.6  

These developments have led to intense speculation that the previous era of scaling 
pre-training compute could be followed by an era of scaling up inference compute. Some, 
including AI company executives, have suggested this represents a continuation of the 
previous paradigm.7 To the contrary, I believe there are a number of key differences between 
scaling pre-training and scaling inference that have profound implications for both AI 
companies and AI governance. 

Uncertainties of the Inference Era 

Two key questions shape how we should think about this shift to inference scaling. One 
question is whether pre-training scaling has truly plateaued or if it will continue at a slower 
rate. Epoch AI suggests that the compute used in LLM pre-training grew at about 5x per year 
from 2020 to 2024.8 Today, the rate seems to be lower – but how much lower remains unclear. 

A second – and ultimately more important – question concerns where inference scaling will 
be applied. We can view the current AI pipeline as having three main stages (Figure 2):  

1.​ Pre-training: teaching models to predict text through methods like next-token 
prediction 

2.​ Post-training: refining models with techniques such as reinforcement learning from 
human feedback (RLHF) or reinforcement learning from AI feedback (RLAIF)  

3.​ Deployment: making the trained model available to be deployed on various tasks 
through chat interfaces, API calls, or other platforms 

8 Jaime Sevilla and Edu Roldán, Training Compute of Frontier AI Models Grows by 4-5x per Year (Epoch AI, 2024), 
https://epoch.ai/blog/training-compute-of-frontier-ai-models-grows-by-4-5x-per-year. 

7 For example, Dario Amodei has said “Every once in a while, the underlying thing that is being scaled changes a bit, or a new 
type of scaling is added to the training process. From 2020–2023, the main thing being scaled was pretrained models: 
models trained on increasing amounts of internet text with a tiny bit of other training on top. In 2024, the idea of using 
reinforcement learning (RL) to train models to generate chains of thought has become a new focus of scaling.” Dario Amodei, 
“On DeepSeek and Export Controls,” January 2025, https://www.darioamodei.com/post/on-deepseek-and-export-controls. 

6 Pablo Villalobos and David Atkinson, Trading off Compute in Training and Inference (Epoch AI, 2023), 
https://epoch.ai/blog/trading-off-compute-in-training-and-inference. 
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Figure 2. Three stages of the AI pipeline: the first two stages, inside the box, take place during model 
development. (Source: author.)  

The crucial question is whether scaled-up inference compute will primarily be used during 
deployment (like in o1 and DeepSeek’s R1) or as part of a more complex post-training process. 
For example, reports suggest that OpenAI may have trained its o3 model by using many runs 
of o1 to generate training data, essentially using inference scaling to improve the training 
process itself. Similarly, xAI reportedly used roughly as much compute for reinforcement 
learning as for pre-training in order to develop Grok 4.9 

Each possibility has important – but different – implications for AI governance. I argue that 
inference scaling means that many ideas in AI governance will need to be either adjusted or 
overhauled. Those of us in the field need to examine how this affects our existing approaches 
and assumptions. 

Scaling inference-at-deployment 

Consider first the scenario where most compute scaling is used to grow the amount of 
inference compute used during deployment. In this scenario, the capabilities of pre-trained 
systems remain at approximately GPT-5 level or only advance slowly, while new capabilities 
are unlocked via increasing inference compute. Some compute may be allocated to 
post-training aimed at having systems productively reason for longer (e.g. the reinforcement 
learning in the train-time compute graph in Figure 1), but this analysis assumes that the 
resulting performance gains remain relatively small compared to deployment compute scaling. 
Grok 4 provides some inconclusive support for this assumption: though it used approximately 
1026 FLOP for post-training, its performance does not seem to have improved significantly, 
perhaps due to the extreme inefficiency of reinforcement learning for frontier models.10 

This shift to inference-at-deployment would reshape several aspects of AI governance. It 
would affect how many copies of advanced models can be deployed simultaneously, alter the 
economics of AI systems, change the strategic importance of model weights and open-source 
releases, and potentially undermine current regulatory frameworks based on 

10 Toby Ord, “The Extreme Inefficiency of RL for Frontier Models,” September 19, 2025, 
https://www.tobyord.com/writing/inefficiency-of-reinforcement-learning. 

9 Nathan Lambert, “xAI’s Grok 4: The Tension of Frontier Performance with a Side of Elon Favoritism,” Interconnects, July 12, 
2025, https://www.interconnects.ai/p/grok-4-an-o3-look-alike-in-search. 
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training-compute thresholds. Each of these changes carries significant implications for how 
we govern AI systems. 

Reducing the number of simultaneously served copies of each new model 

It currently takes a vast number of chips to train a frontier model. Once the model is trained, 
those chips can be used for inference to deploy a large number of simultaneous copies of that 
model. Dario Amodei of Anthropic estimates this to be “millions” of copies.11 This number of 
copies is a key parameter for AI governance as it affects the size of the immediate impact on 
the world the day the new model is ready. A shift to scaling inference-at-deployment would 
lower the number of copies that could be deployed with the same number of chips. For 
example, if inference-at-deployment is scaled by two orders of magnitude, then the number 
of copies drops by a factor of 100 and the new model can only be immediately deployed to 1% 
as many tasks as an equally powerful pre-trained model could be.12 

Increasing the cost of first human-level AI systems 

A related parameter is how expensive the first “human-level” AI systems will be to run. In the 
pre-training scaling paradigm, deploying such systems may well cost much less than human 
labour, meaning that they could be immediately deployed at a great profit. These profits could 
be ploughed back into acquiring more compute to run more copies of the system, creating a 
powerful feedback loop. But each additional order of magnitude that goes to 
inference-at-deployment may increase the cost of using these systems by up to an order of 
magnitude. 

This increased inference-time cost will blunt the immediate impact of reaching any level of 
performance threshold and may even create an initial period where human-level AI systems 
are more expensive than equivalent human labour.13 If so, such systems could be available for 
policymaker demonstrations or safety research before they have transformative effects on 
society. 

 

13 Obviously, the fact that AI is already much better than humans at some tasks while much worse at others complicates this 
idea of reaching “human-level”, but I believe it is still a useful lens. For example, you can ask whether the first systems that 
can perform a particular job better than humans will cost more or less than human wages for that job. 

12 Or, somewhat equivalently, it might be better thought of as slowing these systems down by that factor (e.g. 100x). Amodei’s 
estimate is that AI systems are currently 10x–100x human speed, but if they reach intelligence via inference scaling, they may 
be slower than humans. Both ways of looking at it lead to the same reduction in the “human-days-equivalent of AI work each 
day” when the systems are switched from training to deployment. 

11 Dario Amodei, “Machines of Loving Grace,” October 2024, https://www.darioamodei.com/essay/machines-of-loving-grace. 
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Somewhat reducing the value of securing model weights 

Consider a scenario where frontier model training compute plateaus at approximately the 
GPT-5 level while inference-at-deployment scales by a factor of 100. In this case, stealing 
model weights becomes much less appealing because the perpetrator still faces the full 
inference-at-deployment costs. Since these inference costs would dominate the total expense 
of operating the model at scale, obtaining the weights for free provides relatively little 
economic benefit. The value proposition of model theft diminishes when the largest costs 
cannot be avoided through theft. 

On the other hand, inference scaling might increase certain misuse risks. If the actor stealing 
model weights does not need to deploy their model at scale, but are rather interested in high 
performance on a small number of tasks – such as acquiring information needed to access 
chemical or biological weapons – then having model performance scale with 
inference-at-deployment means a larger number of models can reach the requisite 
performance.  

Somewhat reducing the benefits and risks of open-weight models 

Inference scaling would also affect both the benefits and drawbacks of open-weight models. If 
open-weight models require vast amounts of inference-at-deployment from their users, then 
they are much less attractive to those users than are models of equivalent capability that were 
entirely pre-trained. So open-weight models could become both less valuable to users and 
less concerning from a capability proliferation perspective. They would become less 
strategically important overall. However, as noted above, certain misuse risks tied to achieving 
high performance on a small number of tasks could increase.   

Unequal performance for different tasks and for different users 

Since inference scaling affects how AI performance varies across different applications and 
user groups, it may create new forms of inequality in access to advanced capabilities. 

Scaling inference-at-deployment helps most with tasks where the solution is objectively 
verifiable, such as certain kinds of maths and programming tasks. It can also be useful for 
tasks involving many steps. Two kinds of tasks that benefit from inference scaling are: 

●​ Tasks that require methodical reasoning (“System 2 thinking”) when performed by 
humans, 

●​ Tasks that typically take humans a long time, indicating that they can benefit from a 
lot of thinking before diminishing marginal returns kick in. 
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Because some tasks benefit more from additional inference than others, it is possible to tailor 
the amount of inference compute to the task, spending, for example, 1,000x more on a hard 
mathematics problem than on a simpler, more intuitive task. This kind of tailoring is not 
possible with pre-training scaling, where scaling up by 10x increases the costs for everything. 

The fact that performance can be increased by spending more on inference compute also 
changes the dynamics of AI accessibility: users with more financial resources can access 
greater AI capabilities. This trend is already evident at OpenAI, which now charges 10x more 
for access to the version of their models which use the most inference compute. The era in 
which all users received the same or similar AI services is over. 

Changing the business model and industry structure 

The LLM business model has had a lot in common with software: big upfront development 
costs and then comparatively low marginal costs per additional customer. When marginal 
costs per user are lower than average costs, companies benefit from economies of scale. This 
incentivizes them to set prices low to acquire customers, which in turn tends to create an 
industry with only a handful of players.  

However, if the next two orders of magnitude of compute scaling go into 
inference-at-deployment instead of pre-training, this economic structure would change. The 
shift would disrupt existing business models and perhaps allow smaller players to compete in 
the industry. 

Reducing the need for monolithic data centres 

While training benefits from compute being localised in the same data centre, 
inference-at-deployment can be more easily distributed across different locations. Thus 
scaling inference-at-deployment by several orders of magnitude would reduce reliance on 
large centralized data centres. This would alleviate some current infrastructure bottlenecks, 
such as the challenge of securing a large amount of electrical power in one location.  

This shift in required compute would complicate government oversight strategies that rely on 
monitoring and shaping infrastructure projects. It will also make it harder for governments to 
keep track of new frontier models simply by tracking activity in the largest data centres. As 
inference compute can be provided by a greater number of players in the compute ecosystem, 
know-your-customer rules, data centre monitoring, and chip export controls are likely to be 
less effective in controlling AI diffusion.  
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Complicate the strategy of AI governance via compute thresholds 

A final implication of inference scaling is that it complicates current regulatory frameworks 
that rely on training-compute thresholds to identify potentially dangerous AI systems. 

Many AI governance frameworks are based around regulating only those models above a 
certain threshold of training compute.14 For example, parts of the EU AI Act focus on models 
trained using at least 1025 FLOP, while the (now rescinded) Biden-era US executive order and 
the recently passed SB53 in California used a threshold of 1026 FLOP. These thresholds allow 
regulators to draw a line around a handful of systems with especially significant or uncertain 
capabilities, without needing to regulate the great majority of AI models.  

However, if capabilities can be increased via scaling inference-at-deployment, then a model 
trained using an amount of compute below these thresholds might be amplified to become as 
powerful as a model that would have exceeded them. For example, a model trained with 1024 
FLOP might use 10,000 times more inference compute to perform at the level of a model 
trained with 1027 FLOP. This complicates the use of a training-compute threshold to trigger 
governance measures. 

At first, the threat might be that someone scales up inference-at-deployment by a very large 
factor for a small number of important tasks. If the inference scale-up is only happening on a 
small fraction of all tasks the model is deployed on, one could use a very high scale-up factor 
(such as 100,000x) and suddenly operate at the level of a new tier of model. 

Current techniques for inference scaling do face limitations, often hitting performance 
plateaus that cannot be exceeded by any amount of additional compute. Exceeding these 
plateaus requires substantial research and engineering efforts. However, AI companies are 
already developing better ways to drastically scale inference compute before performance 
plateaus. OpenAI's o3 model, for example, demonstrated the ability to use 10,000x more 
compute than their smallest reasoning model, o1-mini (Figure 3). 

14 Lennart Heim and Leonie Koessler, “Training Compute Thresholds: Features and Functions in AI Regulation,” 
arXiv:2405.10799, August 6, 2024, https://doi.org/10.48550/arXiv.2405.10799. 
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Figure 3 | Performance vs. cost for various OpenAI models showing performance gains from 
scaling up inference-at-deployment across three orders of magnitude. (Source: Arc Prize15) 

Leading companies have also been expanding their data centre capacity and improving 
algorithmic efficiency such that they may already have 100x the effective compute of the first 
data centres capable of serving GPT-4 to customers. This would allow them to offer wider 
access to large amounts of inference compute. For example, OpenAI’s deep research model 
(based on o3) may well exceed the performance of a system pre-trained on 1026 FLOP, even if it 
is technically below that threshold. 

However, while the increased reliance on inference scaling reduces the correlation between 
training compute and the concerning capabilities of AI models, this does not necessarily imply 
that compute thresholds should be abandoned. After all, models trained using large amounts 
of compute can still benefit from inference scaling, and the most capable models are still likely 
to be those that rely on large amounts of compute. Moreover, inference scaling techniques 
themselves face limitations and performance plateaus. Nonetheless, the shift toward inference 
scaling may require adjustments to how we use some tools in the AI governance toolbox and 
have implications for AI deployment.  

Regulators need to make sure that inference scaling is taken into account when assessing the 
risk of models. If models are served or could be used with significant 
inference-at-deployment, it is not sufficient to just look at model performance from a single 

15 Francis Cholet. “OpenAI o3 Breakthrough High Score on ARC-AGI-PUB.” Arc Prize Blog, December 2024.  
https://arcprize.org/blog/oai-o3-pub-breakthrough. 
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forward pass without reasoning tokens. Notably, the General-Purpose AI Code of Practice – 
which details the requirements of the EU AI Act on the most advanced models – requires that 
developers account for inference compute.16  

Another way to update compute thresholds is to say that they cover both systems above 1026 

FLOP of pre-training and systems above some smaller threshold (e.g. 1024 FLOP of 
pre-training) that have undergone post-training to enable high-inference deployment. But 
this would increase complexity and blur the clear demarcation lines that make current 
frameworks effective. 

Capabilities-based thresholds represent another possible tool to identify models of concern. 
Rather than relying on proxy measures like computing power to identify potentially risky 
models, regulators might rely more heavily on evaluations of models’ capabilities to carry out 
specific tasks, assuming significant inference compute budgets. Though making such a change 
would not be possible under the recently passed SB53 in California, it would be possible under 
the EU’s AI Act.17 

Scaling inference-during-training 

AI labs may also be able to reap tremendous benefit from these inference-scaled models by 
using them as part of the training process. If so, the large scale-up of compute resources 
could go into post-training rather than deployment. This would have very different 
implications for AI governance. 

In this section, we’ll focus on the implications of a pure strategy of using inference scaling only 
during the training process. This will clarify its implications for AI governance, though 
realistically we will see inference scaling in both training and deployment. 

Generating synthetic training data 

An obvious approach to scaling inference-during-training is to use an inference-scaled model 
to generate large amounts of high-quality synthetic data – artificially generated data – on 
which to pre-train a new base model. This would make sense if the challenges in scaling up 
pre-training beyond GPT-4 stem from a lack of high-quality training data. For example, court 
documents have revealed that Meta trained models on a Russian repository of copyrighted 
books, LibGen, without permission because they were unable to reach GPT-4 level without it.18 

18 “Kadrey v. Meta, Document 391, Exhibit K, Vo Declaration,” January 14, 2025, 
https://storage.courtlistener.com/recap/gov.uscourts.cand.415175/gov.uscourts.cand.415175.391.24.pdf. 

17 Article 51 gives the AI Office powers to designate models as general-purpose AI with systemic risk based on its capabilities. 
“Article 51: Classification of General-Purpose AI Models as General-Purpose AI Models with Systemic Risk,” EU Artificial 
Intelligence Act, August 2, 2025, https://artificialintelligenceact.eu/article/51/. 

16 “EU AI Act: General-Purpose AI Code of Practice,” EU AI Act: GPAI Code of Practice, 2025, https://code-of-practice.ai/. 
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Anthropic recently agreed to pay $1.5 billion to settle a lawsuit brought by authors over the 
firm’s reliance on datasets of pirated books.19  

This strongly suggests that even though there are still many pieces of text on the internet that 
have not been used for AI training (about 30x as many as were used to pre-train GPT-420), 
performance is limited by a lack of high-quality tokens. Developers have already tried to 
supplement the training data with synthetic data produced by an LLM, but if the issue is more 
about quality than quantity, then they need the best synthetic data they can get. 

Inference scaling can help with this by making the model that produces the synthetic data 
more capable. This works particularly well in areas like mathematics or programming, where 
one can objectively verify the accuracy and efficiency of a model’s answer. The training 
process could involve using advanced reasoning models to generate lots of proofs and 
computer programs, testing them for quality, and adding the best ones to the dataset used for 
pre-training the next base model. 

Being able to verify correct answers in mathematics and coding is particularly important for 
getting the right training signal. But even for domains that are less black and white, it may be 
possible to use more inference compute to generate better synthetic data. For example, one 
could create many essays; intensively edit them; assess them for originality, insightfulness, 
and accuracy; and add the best ones to the stock of synthetic data. 

One could also apply this technique to the stock of human-generated training data, assessing 
all documents in the training data and discarding low-quality ones. This could either improve 
the average quality of the existing training data or make some fraction of the unused data 
usable. 

On its own, this approach of scaling inference-during-training to produce synthetic data for 
pre-training is not so interesting from an AI governance perspective. Its main direct effect is 
to allow the scaling of pre-training compute to recommence, reinvigorating the existing 
scaling paradigm. 

Iterated distillation and amplification 

But a modification of this approach may drive more rapid growth in AI capabilities. The idea is 
to repeatedly improve a model by: 

1.​ Using inference scaling to boost its performance 

20 Jaime Sevilla et al., Can AI Scaling Continue through 2030? (Epoch AI, 2024), 
https://epoch.ai/blog/can-ai-scaling-continue-through-2030. 

19 “What Authors Need to Know about the $1.5 Billion Anthropic Settlement,” The Authors Guild, October 2, 2025, 
https://authorsguild.org/advocacy/artificial-intelligence/what-authors-need-to-know-about-the-anthropic-settlement/. 
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2.​ Training a new model to replicate that boosted performance without the extra 
inference compute 

3.​ Repeating this process many times 

This process powered the advanced self-play in DeepMind’s AlphaGo Zero (see Box 1) and was 
also independently discovered by Anthony et al. and, in the context of AI safety, by 
Christiano.21 

Box 1. Iterated Distillation and AlphaGo Zero 

●​ In the case of AlphaGo Zero, you start with a base model, M0, that takes a representation of the Go 
board and produces two outputs: predictions about which moves a skilled player would choose, 
and an estimate of how likely the active player is to win the game.22 This model will rely on an 
intuitive, fast mode of thinking – or “System 1” approach – to game playing, making quick decisions 
without systematically thinking through future moves. 

●​ The training technique then plays 25,000 games of Go between two copies of M0 that have been 
enhanced with additional inference compute and an algorithm called Monte Carlo Tree Search to 
search through possible moves. Both players use Monte Carlo Tree Search, with M0 guiding the 
search by estimating which moves are most promising and how strong each position is. By 
repeatedly calling M0 in the search (thousands of times), we get a form of inference scaling which 
amplifies the power of this model. We could think of it as taking the raw System 1 intuitions of the 
base model and embedding them in a System 2 reasoning process which thinks many moves 
ahead. 

●​ This amplified model is better than the base model at predicting the move most likely to win in each 
situation, but it is also much more costly. So, we train a new model, M1, to predict the outputs of M0 + 
search. Following Christiano, I shall call this step distillation, though in the case of AlphaGo Zero, M1 
was simply M0 with an additional stage of training. This trained its move predictions to be closer to 
what the enhanced M0 would choose and to make its position evaluations closer to the actual game 
outcomes. While M1 will not be quite as good at Go as the amplified version of M0, it is better than 
M0 alone. 

●​ But why stop there? We can repeat this process, amplifying M1 through inference scaling by using it 
to guide the search process, producing a level of play beyond any seen so far (M1 + search). This 

22 For AlphaGo Zero, the goal was to start with zero information about Go and learn everything, so M0 was simply a randomly 
initialised network. But it is also possible to start with a more advanced network as M0, such as one trained to imitate human 
behaviour. 

21 Paul Christiano, “Benign Model-Free RL,” AI Alignment, June 2, 2017, 
https://ai-alignment.com/benign-model-free-rl-4aae8c97e385; Thomas Anthony et al., “Thinking Fast and Slow with Deep 
Learning and Tree Search,” arXiv:1705.08439, December 3, 2017, https://doi.org/10.48550/arXiv.1705.08439; David Silver et al., 
“Mastering the Game of Go without Human Knowledge,” Nature 550, no. 7676 (2017): 354–59, 
https://doi.org/10.1038/nature24270. 
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then gets distilled into a new model, M2, and we proceed onwards and upwards, climbing higher 
and higher along the ladder of Go-playing performance (Figure 4). 

 

Figure 4. Iterated distillation and amplification to improve the performance of an 
inference-scaled AI model. (Source: author.) 

 
●​ After just 36 hours, AlphaGo Zero had exceeded the ability of AlphaGo Lee, the version that beat 

world-champion Lee Sedol. Within 72 hours, it was beating AlphaGo Lee by 100 games to zero. And 
after 40 days of training (and 29 million games of self-play23), it reached its performance plateau, 
Mmax, with an estimated Elo rating of 5,185 – far beyond the 3,739 of AlphaGo Lee or the low 3,000s 
of the world’s best human players. Even when the final model was used without any search process 
(i.e. without any scaling of inference-at-deployment), it achieved a rating of 3,055, demonstrating 
professional-level play from pure “intuition”. 

It may be possible to use such a process of “iterated distillation and amplification” in training 
LLMs. The idea would be to take a model such as GPT-4o (which has powerful System 1 
capabilities from pre-training) and use it as the starting model, M0. Then, amplify it via 
inference scaling to simulate System 2–type reasoning before returning its final answer (as o1 
and R1 do).24 Then, distill this amplified model into a new model, M1, that can produce answers 

24 Like o1 and R1, we would presumably include additional RL post-training to prepare it for use in inference scaling. 

23 Given 29 million games of self-play and a set-up with 25,000 games before each distillation, there were presumably 1160 
iterations of amplification and distillation before it reached its plateau, such that Mmax is M1160. 
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of the same quality without doing extensive reasoning.25 If this works, you now have a model 
that is more capable than GPT-4o without using extra compute during deployment. 

By iterating this process of amplification followed by distillation, it may be possible for the 
LLM (just like AlphaGo Zero) to climb a very long way up this ladder before the process runs 
out of steam. And the time for each iteration may be substantially shorter than the time 
between major new pre-training runs. Like AlphaGo Zero, the final distilled model could 
display very advanced capabilities even without amplification. If this all worked, it would be a 
way of scaling inference-during-training to substantially quicken the rate of AI progress. 

It is not at all clear whether this will work. The distillation process may plateau quickly, require 
increasingly large models at each step, take too long per iteration or too many iterations, or 
require years’ worth of engineering effort to overcome the inevitable obstacles that will 
arise.26 AlphaGo Zero provides a proof of concept, showing how a small team at a leading lab 
can achieve take-off with such a process and reach capabilities far beyond the former state of 
the art. However, the fact that we have so far not seen labs successfully use this method for 
LLMs should give pause regarding its usefulness.  

So iterated distillation and amplification provides a plausible pathway for scaling 
inference-during-training to rapidly create much more powerful AI systems. Arguably, this 
would constitute a form of recursive self-improvement where AI systems are applied to the 
task of improving their own capabilities, leading to rapid escalation. While there have been 
earlier examples of this, they have often been on narrow domains (e.g. the game of Go) or have 
only applied to certain cognitive abilities (e.g. learning how to learn) and have therefore been 
bottlenecked on other abilities. An LLM scaled up with iterated distillation and amplification 
of LLMs could credibly learn to improve its own general intelligence. 

Reduced governance transparency 

What does this mean for AI governance? A key implication is that scaling 
inference-during-training could reduce transparency about the best current models. While 
this use of inference during the training process would reach the EU AI Act's compute 
threshold – both because inference-during-training counts as training compute and because 
it pushes the total compute over the limit – that threshold only requires oversight when the 
model is placed on the EU market.27  

27 And only when deployed inside the EU itself, where OpenAI’s inference-scaled model deep research is conspicuously 
absent. 

26 It is also possible that it will work in some domains (such as mathematics and coding) but not others, leading to superhuman 
capabilities in several new domains, but not across the board. 

25 Here M1 could be a fresh model distilled from the inference-scaled M0, or it could be M0 with fine-tuning to make it behave 
more like the inference-scaled M0. 
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This means it may be possible for companies to substantially increase the intelligence of their 
leading models without anyone outside the organisation knowing. AI governance may then 
have to proceed with greater uncertainty about the state of the art. Relatedly, the lack of 
transparency would mean the public and policymakers would not be able to try these 
state-of-the-art models, making it harder for the range of publicly acceptable policies to shift 
in response. There would be less regulatory attention and a more abrupt shock to the world 
when the models at the top of the training ladder are deployed. The need to address 
transparency concerns raised by inference scaling may lend credence to pursuing an 
entity-based approach for AI governance.28  

Shortened timelines to AGI 

But perhaps most importantly, the possibility of training general models via iterated 
distillation and amplification could accelerate progress towards artificial general intelligence 
(AGI) systems with transformative global impacts. If this was combined with a lack of 
transparency about state-of-the-art models during internal scaling, policymakers could not 
know for sure whether progress was accelerating or not, making it hard to know whether 
emergency measures were required. All of this suggests that requiring companies to disclose 
the current capabilities of their systems – and their plans to improve them in the near-term – 
would be very valuable. 

Conclusions 

The shift from scaling pre-training compute to scaling inference compute may have 
substantial implications for AI governance. 

If much of the remaining scaling comes from scaling inference-at-deployment, this could: 

●​ Reduce the number of simultaneously served copies of each new model 

●​ Increase the cost of first human-level AI systems 

●​ Somewhat reduce the value of securing model weights 

●​ Somewhat reduce the benefits and risks of open-weight models 

●​ Allow unequal performance for different tasks and for different users 

●​ Change the business model and industry structure 

●​ Reduce the need for monolithic data centres 

28 Dean W. Ball and Ketan Ramakrishnan, Entity-Based Regulation in Frontier AI Governance (Carnegie Endowment for 
International Peace, 2025), https://carnegieendowment.org/research/2025/06/artificial-intelligence-regulation-united-states. 
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●​ Complicate AI governance via compute thresholds 

If companies instead focus on using inference compute during training, then they may be able 
to use reasoning systems to create the high-quality training data needed to allow further 
gains from scaling pre-training. Inference-during-training could even accelerate scaling if 
companies use it to push their models up the ladder of distillation and amplification, as 
Google DeepMind did to create AlphaGo Zero. This possibility may lead to: 

●​ Less transparency about state-of-the-art models 

●​ Shorter timelines to transformative AGI 

Either way, the shift to inference scaling also makes the future of AI less predictable than it 
was during the era of pre-training scaling. There is now more uncertainty about how quickly 
capabilities will improve and which longstanding features of the frontier AI landscape will 
persist. This uncertainty will make planning for the next few years more difficult for the 
frontier labs, investors, and policymakers. And it may place a premium on agility: the ability to 
first spot what is happening and pivot in response. 

This analysis should be taken as a starting point for understanding the effects of inference 
scaling on AI governance. As this transition continues, it will be important for the field to track 
where inference compute is being employed and thus better understand which of these issues 
we are facing. 
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Appendix | Comparing the costs of scaling pre-training vs 
inference-at-deployment 

Scaling up pre-training by an order of magnitude and scaling up inference-at-deployment by 
an order of magnitude may have similar effects on the capabilities of a model, but they can 
have quite different effects on the total compute cost of the project. Which one is more 
expensive depends on the circumstances in a rather complex way. 

Let’s focus on the total amount of compute used for an AI system over its lifetime as the cost 
of that system (though this is not the only thing one might care about). The total amount of 
compute used for an AI system is equal to the amount used in training plus the amount used 
in deployment: 

C = Cpre-training + Cpost-training + Cdeployment 

Let N be the number of parameters in the model, D be the number of data tokens it is trained 
on, d be the number of times the model is deployed (e.g. the number of questions it is asked) 
and I be the number of inference steps each time it is deployed (e.g. the number of tokens per 
answer). Then this approximately works out to: 

C ≈ ND + Cpost-training + dNI 

Note that scaling up the number of parameters, N, increases both pre-training compute and 
inference compute, because you need to use those parameters each time you run a forward 
pass in your model. But scaling up D does not directly affect deployment costs. Some typical 
rough numbers for these variables in GPT-4-level LLMs are: 

LLMs are: 

N = 1012, D = 1013, I = 103, d = ? 

On this rough arithmetic, the deployment costs overtake the pre-training costs when the total 
number of tokens generated in deployment (dI) is greater than the total number of training 
tokens D. That would require d > 1010. Apparently, this is usually the case, with deployment 
compute exceeding total training compute on commercial frontier systems. 

The most standard way of training LLMs while minimising training compute involves scaling 
up N and D by the same factor. For example, if you scale up training compute by 1 OOM, that 
means 0.5 OOMs more parameters and 0.5 OOMs more data. So, scaling up training compute 
by 1 OOM also increases deployment compute by 0.5 OOMs. In contrast, scaling up 
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inference-at-deployment by an order of magnitude does not (directly) affect pre-training 
compute. 

When either the pre-training compute (ND) or the deployment compute (dNI) is the bulk of 
the total (including Cpost−training), there are some simple approximations for the costs of scaling. 
If Cpre−training ≫ Cpost−training + Cdeployment, then scaling pre-training by 10x increases costs by nearly 
10x, while scaling inference-at-deployment (I) by 10x does not affect the total much. Whereas 
if Cdeployment ≫ Cpre−training + Cpost−training, then scaling pre-training by 10x increases costs by ~3x 
(from the larger number of parameters needed at deployment), while scaling 
inference-at-deployment by 10x increases costs by nearly 10x. So, there is some incentive to 
balance these numbers where possible. 

It is important to note that the costs of scaling inference-at-deployment depend heavily on 
how much deployment you are doing. If you just use the model to answer a single question, 
then you could scale it all the way until it generates as many tokens as you pre-trained on (i.e. 
trillions) before it appreciably affects your overall compute budget. But if you are scaling up 
the inference used for every question, your overall compute budget could be affected even by 
a 2x scale-up. 
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