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Abstract

We study how the information environment affects races to implement a powerful new
technology such as advanced artificial intelligence. In particular, we analyze a model
in which a potentially unsafe technology may cause a “disaster” that affects all actors
and actors that implement the technology face a tradeoff between the safety of the
technology and their performance in the race. Combining analytic and computational
approaches, we solve for the perfect Bayesian equilibria under three scenarios regard-
ing information about capabilities: unknown, private, and public. First, we show that
more decisive races, in which small leads in performance produce larger probabilities of
victory in the race, are weakly more dangerous under most parameter values. Second,
we show that revealing information about the capabilities of rivals has two opposing
effects on disaster risk. The benefit is that actors may discover that they are sufficiently
far apart in capability and will compete less. The cost is that actors may discover they
are close in capability and thus engage in a dangerous race to the bottom, cutting cor-
ners on safety to win the race. As a result, the information hazard result of Armstrong
et al. [2016]–that the public information scenario is more dangerous than the private
information scenario–only holds under high decisiveness. As decisiveness decreases, the
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first effect dominates the second, so that public knowledge of capabilities is welfare-
improving. Third, in all information scenarios, we find that the larger the impact of
the eventual loser on safety, relative to the eventual winner, the more dangerous is the
race due to a moral hazard effect.



1. Introduction

Uncertainty is central to the study of arms races in the field of international relations. It

underpins analyses of when arms races lead to conflict [Kydd, 1997, Jervis, 1976, Schelling,

1980] and studies of the potential of treaties and other forms of international cooperation

[Kydd and Straus, 2013]. In a world characterized by anarchy, it is likely that the information

environment will play a key role in determining the impact of emerging technologies and the

competitions to develop them. We study the role of incomplete information in a setting

that has been largely neglected in the international relations literature: races for powerful

new technologies. Some scholars posit that such technology and arms races may become a

key feature of international politics in the coming decades, as states race to be the first to

develop new technologies such as advanced artificial intelligence (AI) or nanotechnology that

will give them a sudden increase in capability over other states [Bostrom, 2014].

Such races have important differences from competitions to build larger numbers of ex-

isting armaments.1 An important feature of these races is that they are associated with

different kinds of risk. Sometimes this risk is an exogenous feature of the international sys-

tem that is exacerbated by an arms race. If a state’s technological development has the

potential to cause a relative power shift, its rivals may attack to preempt such development

[Fearon, 1995]. In other cases, which we focus on in the present work, the risk of negative

externalities is inherent to the development and implementation process itself. For example,

biological weapons development can lead to releases of pathogens that affect a broad range

of actors beyond those involved in development. Biological weapons use has a relatively high

1See Huntington [1958] for a related distinction between qualitative and quantitative arms races.
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probability of infecting the user, which is an argument put forth about why there have been

relatively few uses of such weapons despite the weakness of the provisions of the Biological

Weapons Convention [Ord, 2020]. Indeed, some scholars posit that substantial global or even

existential risks are involved in such arms races [Ord, 2020, Bostrom, 2019, Farquhar et al.,

2017].2

Because of these risks, actors face an inherent safety-performance tradeoff, in which they

must choose the optimal allocation of resources between advancing the performance level

of a technology, thereby increasing the probability of winning the race, and investing in

the safety of the technology, which lowers the risk of disaster [Trager et al., 2021]. Such

allocations are determined by the strategic contexts in which the actors find themselves.

Actors’ information about their rivals’ capability interacts with this tradeoff in a number of

ways. Overestimation of a rival’s technological capability may lead an actor to overinvest

in capability, increasing risk relative to the complete information scenario [Stafford et al.,

2021]. In other cases, actors may learn that they are far behind in the race and choose to

cede the prize to their opponent, lowering risk [Bimpikis et al., 2019].

We examine a model that captures these dynamics. Combining analytic and computa-

tional approaches, we solve for the perfect Bayesian equilibria under three scenarios regarding

information about capabilities: unknown, private, and public. First, we show that more de-

cisive races, in which small leads in performance produce larger probabilities of victory in

the race, are weakly more dangerous under most parameter values. Second, we show that

revealing information about the capabilities of rivals has two opposing effects on disaster

2Aschenbrenner [2020] argues that the rate of the development of such technologies may be increasing in the
short run.
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risk. The benefit is that actors may discover that they are sufficiently far apart in capability

and will compete less. The cost is that actors may discover they are close in capability and

thus engage in a dangerous race to the bottom, cutting corners on safety to win the race. As

a result, the information hazard result of Armstrong et al. [2016]–that the public informa-

tion scenario is more dangerous than the private information scenario–only holds under high

decisiveness. As decisiveness decreases, the first effect dominates the second, so that public

knowledge of capabilities is welfare-improving. Third, in all information scenarios, we find

that the larger the impact of the eventual loser on safety, relative to the eventual winner,

the more dangerous is the race due to a moral hazard effect.

Some of these dynamics are illustrated in the race for the first nuclear bomb during World

War II when certain physicists involved in the Manhattan Project expressed concerns over

the safety-performance tradeoff. Edward Teller, for example, feared that a nuclear fusion

reaction would produce a temperature exceeding that of the Sun (15,000,000˝C), igniting

the atmosphere and ending life on Earth. He privately urged the US government to delay

development so that additional calculations and tests could be performed. Though the

team was able to show that these fears were improbable, Teller and his colleagues remained

worried until after the Trinity test was conducted. Part of the reason why history favored

development over safety is the US government’s uncertainty over the level of progress of

Germany’s development of nuclear weapons.3

A number of scholars believe that the development of advanced forms of artificial intel-

ligence (transformative AI, or TAI) will exhibit similar strategic dynamics [Bostrom, 2014,

3Ellsberg [2017] notes that the Manhattan Project continued to take on unnecessary risks even after it became
apparent that Germany would lose the war.
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Yudkowsky, 2013]. Bostrom [2017] highlights two classes of risks in such scenarios: the risk

of misaligned AI objective functions (the control problem), and the use of TAI by actors

wishing to impose harms on others (the political problem). Contemporary AI systems have

already exhibited such pathologies [Beraja et al., 2020, Mehrabi et al., 2021]. As the rewards

from advanced AI become more apparent, firm and state actors may have incentives to in-

crease the pace and secrecy of development, with as-yet-unknown effects on risk. Currently,

much AI development is governed by a norm of openness, with new research published on

the open-source repository arXiv. However, that norm is changing. For example, OpenAI

decided against publishing the source code for its GPT-3 language model to ensure that it

could not be misused by malicious actors. Bostrom [2017] notes that competitive pressure

could lead firms or states to close off development entirely, preventing proper oversight by

the public or other benevolent actors.

According to Armstrong et al. [2016], a closed information environment could be seen

as wholly beneficial. They study a model of a qualitative arms race in which actors face

a safety-performance tradeoff, and find that under certain conditions, shared information

about relative capabilities decreases welfare.4 In their model, n competitors compete to in a

technology race while aware that a disaster might be caused by the winner of the race, or the

owner of the technology. Endowed with innate capability xi, each competitor i can invest

in safety (si), which negatively affects their performance level (xi ´ si). The competitor j

with the highest competence level wins the race and builds the technology, which succeeds

with probability sj and results in a disaster with probability 1 ´ sj. Their most surprising

4Bostrom [2011] defines an information hazard as a piece of information whose dissemination increases the
expected harm to society.
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result is that, counter-intuitively, when the actors are sufficiently rivalrous, the risk level of

the race rises as actors learn more about their own capability and that of their opponents.

Although the result holds for a large fraction of parameter values in their model, we develop

a model to show that this finding depends on a few extreme assumptions: 1) that the winner

is absolutely determined by her performance level (xi´ si) and 2) that the winner is the sole

source of risk.

To illustrate the extremity of the first assumption, note that in the Armstrong et al.

[2016] model, if one actor has even ε greater level of performance compared to the other,

she wins the race with certainty. Moreover, this infinitesimal advantage in performance be-

comes common knowledge in the public information case, and the fully informed players

can therefore disproportionately reduce investment in safety. We instead argue that winning

real-world technology races depends on a variety of factors rather than any one well-known

measure of performance. For example, in the TAI case, progress may be achieved by in-

creasing computing power via scaling laws [Hernandez, 2018], or via different approaches to

algorithmic improvement. Performance is thus a function of capability (defined as a function

of current knowledge, effort and resources), but also of resource allocation decisions whose

effect on success is probabilistic from the point of view of the race participants. Technology

development processes are inherently stochasitic in terms of the timing of advances and with

respect to the victor in the competition. Victory is influenced by a variety of decisions, but in

expectation not generally fully determined by any one. Thus, in contrast to the Armstrong

et al. [2016] model, victory in the competition is stochastic even if one actor has slightly

greater human and material resources than others or invests slightly less in the safety of the

technology.
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To formalize this stochasticity, we utilize a difference-form contest success function parametrized

by a decisiveness parameter m. We find that the information hazard–the finding that public

information is a more dangerous setting than private information–only holds under extreme

values of m (indeed, the model in Armstrong et al. [2016] corresponds to the case where

m “ 8). We find that the higher the decisiveness of the race, the more likely players are

to cut corners on safety. This makes intuitive sense, as decisiveness controls the expected

returns to investing in performance. Thus, if the path to AI is noisy, races will be relatively

less dangerous than the highly-decisive race modelled in Armstrong et al. [2016].

We show that, under more moderate levels of the decisiveness parameter m, the public

information case is often safer than the private information case. This is a result of the

changing balance of two opposing forces facing states as the race becomes more noisy. The

first force is that laggards are more likely to win as decisiveness decreases, which increases the

overall risk because laggards take on more risk. The other is that some actors react to this

lower probability of winning by increasing safety investments, as corner-cutting generates

lower expected returns. As decisiveness decreases, in the public information case, the latter

effect dominates for all players except those who are close in capability. Thus, across most of

the type distribution, as decisiveness decreases, players increase safety investments substan-

tially. On the other hand, in the private information case, the former effect dominates. In

this case, since players are uncertain of where they are in the type distribution, they are still

willing to take on risk even as decisiveness falls. Overall, then, even in cases when the public

information case is the most dangerous in highly decisive races, as the returns to investing

in relative capability become noisier, this dynamic may be reversed; the private information

case will generally be the most dangerous.
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The second assumption is likewise extreme. In the Armstrong et al. [2016] model, the

sole source of risk is the winner’s lack of investment in safety. This is unlikely to be the

case, as even the losers’ unaligned AI systems have the potential for significant harm. Gen-

eralizing beyond AI, technology races may produce other externalities as well, for example

by increasing carbon emissions [Wiblin]. In order to address this possibility, we introduce a

weighted sum model of safety investment, in which the overall risk of disaster comes from a

weighted sum of the safety investments of the winner and the laggards. We parametrize this

weighted sum by a single measure γ, the contribution of the winner’s safety investments to

the overall risk, while the n ´ 1 laggards’ safety investments contribute 1 ´ γ in total. We

find that for plausible values of γ, disaster risk is monotonically increasing as more weight

is placed on the laggard. This is due to a combination of two forces. First is a selection

effect. Having more of the overall safety burden fall on the losers increases risk because losers

are likely to be laggards with relatively low capability who cut corners on safety more than

capable leaders. Second is a moral hazard effect. If overall safety depends on a sum of each

player’s individual efforts, players have an incentive to free ride off the safety investments of

others, a classic problem in the public goods literature [Buchholz and Sandler, 2021]. That

is, if AI safety provision is more like global carbon emissions reduction than like building a

dyke, we should expect overall safety provision to be lower.

Finally, we analyze the robustness of our results to other parameters in our model: enmity

and the distribution of performance. We find that the results in Armstrong et al. [2016] about

these parameter values still qualitatively hold but may be stronger depending on decisiveness

and the safety contributions of the laggard. In all information states, the lower the variance

of the performance type distribution and the higher the level of enmity, or rivalry between
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the players, the riskier the race becomes. Further, we demonstrate that the effect of enmity

exacerbated when decisiveness is high and the safety weight of the leader is low. That is,

the effects of bitter rivalry are worse when actors know that cutting corners on safety would

more likely lead them to win the race or when they do not internalize the full benefits of

safety investments.

2. Information, arms racing, and risk

The sorts of incomplete information that drive the risk of conflict, climate disaster, and other

public “bads,” appears to fall into three broad categories [Ramsay, 2017]. The majority of

the literature has focused on uncertainty over actors’ costs of conflict [Kydd, 1997]. A second

strand of literature, drawing on the insights in behavioral economics, invokes such causes as

players’ mutual tendency to be either overly optimistic about their own chances of winning

a conflict [Wittman, 2009] or overly pessimistic about the intent of a rival’s arms buildup

[Jervis, 1976]. Finally, a third strand of literature, in which our work is situated, focuses on

the role of uncertainty about the capabilities of rivals. Across literatures, the existence of

a baseline bargaining model of conflict [Fearon, 1995] has given scholars a framework with

which to analyze the role of uncertainty in war. This has led to a number of robust analytical

results, including that weaker types are less likely to initiate conflict [Powell, 2004], that a

higher variance over the distribution of types increases risk [Reed, 2003, Wittman, 2009],

and that perfectly peaceful equilbria only obtain when the joint cost of war is large enough

[Fey and Ramsay, 2011].

In contrast to the study of bargaining and war, the study of information and uncertainty
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in arms races has been hindered by the lack of a standard model for thinking about such com-

petitions.5 Kydd [2000] and Meirowitz [2008] focus on situations in which states are able to

arm in private before bargaining. Kydd shows that states perceived as having relatively low

capabilities tend to arm in private in order to secure better bargaining outcomes. Meirowitz

[2008] endogenizes the decision to disclose capabilities, arguing that states prefer to keep

their capabilities private to secure better bargaining outcomes, even when the risk of war

increases. A second class of models studies an asymmetric arms race, when a weaker state

is seeking to acquire new military capabilities to lower the gap with strong states. Debs and

Monteiro [2014] endogenize the choice of investment in capabilities. In contrast to Fearon

[1995], they show that war is only possible when the arming state possesses private informa-

tion about its level of capabilities. Bas and Coe [2016] study a dynamic model in which a

strong state obtains a noisy signal about an arming state’s level of capabilities, finding that

the estimated time to completion of the arming is more predictive of preventative war than

the mere existence of arming.6

The other literature in which our paper is situated is the economics literature on contests,

in which actors race for a prize. Specifically, we focus on the literature that uses contest

success functions, first studied by Tullock [2005] and later axiomatized by Skaperdas, to

study the rate of returns to effort in winning the contest. In general, these models study

variations of a simple utility function

5For a comprehensive review of the literature on arms races, see Glaser [2000].
6A related literature studies uncertainty over the utility functions over the value of prizes in arms races.
Relevant papers include Jervis [1976],Kydd [1997], and Fearon [2011].
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uipxiq “ Vipipxi,x´i,mq ´ hipxiq (1)

in which Vi is the valuation of the prize to player i, xi is player i’s investment in the con-

test, which carries a cost hipxiq ě 0. pi is the contest success function, parametrized by

decisiveness parameter m to control for the returns to effort. Relatively few models in this

literature, however, focus on studying uncertainty over x´i, partly due to the difficulty of

finding a closed-form expression for equilibrium investment levels in such contests. Baik

[1994] was the first to derive an equilibrium for the complete information case in a Tullock

contest, finding that weaker players invest higher levels of effort. Grossmann [2014] studies

a contest in which players’ returns to effort are drawn from a Bernoulli distribution and

both players share the same prior over their own and their rival’s type. He finds that lower

expected returns reduce both players’ effort and increase expected profits. Einy et al. [2015]

derive the conditions under which a contest has a pure strategy Bayesian Nash equilbrium,

and Ewerhart and Quartieri [2020] derive the conditions under which a pure strategy Nash

equilibrium is unique.7

We bring insights from these two strands of literature to study an oft-neglected type

of arms competition: the qualitative arms race [Huntington, 1958]. A small but growing

literature has emerged in recent years in response to two growing concerns over new military

technologies. The first is that such technologies will lead to discontinuous power shifts,

7Generalizing from static contests, Bimpikis et al. [2019] study a dynamic contest in which players lagging in
the race who lack information about the progress of their rivals exert more effort compared to players who
know they are laggards. However, the static setting of our model does not permit us to analyze the role of
information on such dynamics.
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increasing the intensity of arms races and potential for conflict. This view is epitomized by

President Putin of Russia, who said with regards to military uses of AI: “the one who becomes

the leader in this sphere will be the ruler of the world.” [noa, 2017]. A second concern is that

the returns to winning such contests can lead actors to cut corners in their development,

potentially leading to global, even existential, risks. In the literature on qualitative races

are Naude and Dimitri [2020], who show that taxing AI development and using public

procurement can incentivize cooperation and reduce risk.8 Stafford et al. [2021] analyze a

dynamic arms race in which disaster risk is higher for a larger gap in players’ performance

levels when enmity is high but is lower when enmity is low. They show that there exists

a safety-performance tradeoff in which investments in safety and investments in research

progress are complementary goods. Unlike our model, all of these models study risk under

the assumption that information about players’ capabilities is common knowledge. However,

we know that an additional source of risk is uncertainty over capabilities [Armstrong et al.,

2016]. It is to this uncertainty that we now turn.

3. Model primitives

In our model, n “ 2 agents (firms or states) compete to build a significant technology,

which for ease of reference, we label transformative AI (TAI). Each agent i is endowed with

capability level xi, which, depending on the information state, may be unknown, privately

known, or publicly known. Their capability is drawn independently from a commonly-

8Note that such mechanisms presume that TAI will be developed within one state. Public goods problems
are exacerbated in anarchy. For a literature review, see Buchholz and Sandler [2021].
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known distribution Gpxiq “ Uniformp0, µq, and each player chooses safety investment level

si P r0, 1s that determines her overall performance ki, given by ki “ xi ´ si. The player i

who wins the race then implements TAI; with probability si, implementation is successful,

and with probability 1 ´ si, a disaster is incurred. We normalize the value of winning the

race to 1 and the value of a disaster to 0. Following the standard arms race literature, we

assume that each player has a symmetric level of enmity (e P r0, 1s) toward her rival, which

represents the opportunity cost of losing the race. Players’ expected utility functions are

then given by

uipsiq “ siPrpi wins|ki, kjq ` p1´ eqsjPrpj wins|ki, kjq

As noted in the introduction, the actor with the highest level of performance wins the

race, and which player has the highest level of performance is partly stochastic and partly a

function of the players’ capabilities. Other factors, including luck or unobserved measures of

capability, may also be correlated with a player’s ability to win the race. To formalize these

microfoundations and aid in computation of equilibrium strategies, we model each player as

endowed with a known level of performance xi plus an unknown additive noise component

vi drawn from a commonly-known distribution V „ Gumbelp1, 1
m
q. In addition, each player

knows her rival also independently draws an additive noise component vj „ V . Therefore, we

can represent each players uncertainty-adjusted capability with the random variable cipxiq.

This level ci, unbeknownst to players in the game, represents the randomness of the race

and determine which type wins. That is, the player with the highest value of ci wins the
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race, where cipxiq ” xi ` vi ´ vj, vi, vj „ Gumbelp1, 1
m
q. We denote F pciq and fpciq as its

distribution and density functions, respectively.9

We know that a contest with Gumbel-distributed noise components is equivalent to a

standard Tullock [2005] contest with a logistic contest success function [Ryvkin and Drugov,

2020]. We can then rewrite the utility function as

uipsiq “ si

˜

emki
ř

j emkj

¸

` p1´ eqsj

˜

1´
emki

ř

j emkj

¸

“ si1tci ą cju ` p1´ eqsj1tci ă cju

Contest success functions have been used in both the economics literature on innova-

tion contests [Baye and Hoppe, 2003] and the international relations literature on conflict

[Skaperdas, 1998, Hirshleifer, 1995]. We choose the logistic (difference form) CSF over the

ratio CSF for both tractability and theoretical reasons.10 First, when taking expectations

over CSFs, the ratio form integrates over values of 0 in the denominator such that the in-

tegral diverges. Second, [Hirshleifer, 1995] argues based on a series of historical examples,

that the ratio form is only applicable to conflict when conditions are ideal; when conditions

are imperfect, the difference form is more appropriate.

An important focus of our paper is the decisiveness parameter in the CSF, m ě 0. This

determines the rate at which additional effort translates into success. One interpretation of

it is the degree of uncertainty over possible paths to TAI. In the economics of innovation

9A closed form derivation of the distribution is provided in Appendix A.
10See Skaperdas for an axiomatization.
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literature, scholars have modeled idea generation as a function of existing ideas. Agrawal

et al. [2019b] note that new ideas are formed as a combination of existing ideas.11 If the

search space of paths to TAI is large relative to the rate at which researchers can navigate

it, then such a race is likely to have a lower decisiveness parameter. One could imagine this

is the case, for example, if researchers are uncertain about which algorithms lead to TAI.

However, if the search space is small relative to the rate of researchers’ idea generation, the

race is likely to be more decisive. This might be the case, for example, if most of the progress

on machine learning benchmarks continue to come from scaling up computing power. If TAI

is developed as a result of scaling up compute using known algorithms, then the current gap

in capabilities between the leader and the laggard is likely to be more decisive.

Our other main focus is the weighted sum form of safety provision. Weighted sum

production technologies have been studied extensively in the public goods literature.12 Each

player i chooses si, but the overall level of safety provision is given by ŝi, a weighted sum of

the leader’s safety provision and laggards’ provision:

ŝi “ γsi `
1´ γ

n´ 1

ÿ

j‰i

sj (2)

where γ P r0, 1s. The γ parameter thus controls the proportion of risk that comes from

the leader’s safety investment. In some TAI development scenarios, all of the players may be

developing relatively safe AI when one player discovers a new algorithm that immediately

gives them TAI. In such a case, we might expect γ to be close to 1 if the actors could copy a

11In their model, which nests the classic Jones [1995] endogenous growth model, a researcher with access to

Aφ, φ P p0, 1q ideas faces 2A
φ

possible ideas combinations, only some of which are productive.
12See Buchholz and Sandler [2021] for a review.
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safe implementation. In other cases, the increase in capabilities leading to TAI may be more

gradual, such that even the laggards have relatively high capabilities when the race is over.

In such a case, γ is likely to be closer to 1
n
.

Finally, we note that these assumptions allow us to nest the Armstrong et al. [2016] model

as a special case of our more general model, allowing us to perform comparative statics on

decisiveness and the safety weight of the leader. Specifically, their model is equivalent to our

when mÑ 8, γ “ 1. First, prior work has shown that F pcq converges uniformly to F pxq as

mÑ 8 [Jia et al., 2013, Che and Gale, 2000]. That is, logistic contests converge to all-pay

auctions in the limit of decisiveness, in which the player with the largest ki wins the race

with certainty. Second, note that when γ “ 1, ŝi “ si in players’ utility functions. We now

turn to our solution concept.

4. Base model

Here we derive results for our main model under three information conditions, allowing us

to perform comparative statics on the safety levels of leaders and laggards, the disaster risk,

and the information hazard or increased risk of public over private information about rivals’

capabilities.

4.1 No information

In this scenario, no agent knows her own capability. This scenario maps to a situation where

players are unaware of how their current stock of resources maps onto the ability to make
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progress toward TAI. This is distinct from the uncertainty that comes from decisiveness.

With low values of decisiveness, players may know their own performance level and can

channel their resources toward developing TAI, with uncertain results. Here, players also

have no information about their own capability. This is a more fundamental source of uncer-

tainty: does a player’s stock of resources even contribute to AI progress at all? Realistically,

then, the no information case represents a lower bound on players’ knowledge, as in the real

world players are likely to have at least an understanding of how to build strong AI. Because

players have the same prior beliefs over the type space, in the symmetric Nash equilibrium,

each will choose the same strategy. Here we derive the equilibrium safety level of each player

as well as the expected disaster risk over the distribution of player capabilities.

Recalling that F pcq, fpcq represent the distribution and density of the noise-adjusted

capability random variable C, we derive the unique Bayesian Nash equilibrium in the private

information case.

Proposition 1. In the case in which players do not know their capabilities, the unique

symmetric BNE strategy is given by: s˚H “ mint1, 1
2e

ş8

´8
fpcq2dc

u.

Remark. All proofs of propositions are presented in Appendix A.

Now we turn to the disaster risk. This is the expected probability of disaster over the

distribution of agents who play their BNE strategies. Since all agents are playing the same

action, the expected risk of disaster is given by 1´ s˚H.

Corollary 1.1. In any distribution of capability levels the expected level of disaster risk is

given by DH “ maxt0, 1´ 1
2e

ş8

´8
fpcq2dc

u.
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4.2 Private information

In this section, we consider the case in which each player knows her own capability level

but not that of her rivals. This situation more closely resembles real-world qualitative

races. Power- or profit-maximizing states and firms alike have a strong incentive to keep

their technological capabilities a secret from rivals in order to win the technological race.

Actors do not know when TAI will be developed and by whom, but they have some notion

of how much progress they have made relative to the progress that their rivals are likely

to have made. For instance, they may have developed beliefs derived from their research

experience about whether TAI can be developed by scaling up computations, conditioning

on other discoveries they have made, and how likely they and their rivals are to have access

to required levels of computation on different time frames. Alongside other estimates, these

factors lead to a set of subjective beliefs among rivals that are based on precise information

about one’s own achievements and guesses about the achievements of others. This situation

is fairly well represented by the modeling scenario in which actors have private information

about their capabilities. Thus, this scenario maps onto states of the world in which private

firms or geopolitical rivals are developing TAI. In the private information case, each team

i, can condition their safety level on their own capability, choosing a strategy: sprivatepxiq.
13

Given that players are maximizing expected utility, we use as our solution concept a Bayesian

Nash equilibrium.

Proposition 2. There always exists a symmetric Nash equilibrium in pure strategies. The

strategy is given by s˚privatepxiq “ mint
şxi
´8pFn´1pcqqedc

pFn´1pxiqqe
, 1u.

13Note that as our notation implies, we will focus on symmetric equilibria.
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We see that as enmity level increases, the agents start putting less efforts into safety.

Also, agents with higher capability exerts more effort into safety.

The overall disaster risk is given by Dprivate “ 1 ´ Ewinnerrs˚privatepxiqs, where Er.s is the

expectation over the true distribution of player types. Corollary 2.1 gives formal expression

of the disaster risk.

Corollary 2.1. The disaster risk in the private information scenario is given by Dprivate “

1´ 2 ¨
şµ

0
mint

şx
´8

F pcqedc

F pxqe
, 1uF pxq

µ
dx.

4.3 Public information

Now we solve for the case in which all agents are fully aware of each other’s capabilities. This

maps to states in which AI development remains open, as could be the case if academia is the

driver of progress in the field, or geopolitical allies share information while developing TAI,

or espionage techniques make secret-keeping impossible. Here, denote the leader’s capability

as x and the second highest player’s as y. Denote ∆ :“ x´y as the variable on which players

condition their safety choices.

Consider the 2 player case. Each player’s utility is given by

uip∆q “ sip∆q
empxi´siq

ř2
j“1 empxj´sjq

` sjp∆qp1´ eqp1´
empxi´siq

ř2
j“1 empxj´sjq

q

Proposition 3. There exists a unique pure strategy Nash equilibrium for the public infor-

mation cases for all values of m ą 0.

Denote the solution to this system of equations as s˚p∆q. We now show payoff and

strategy equivalence with the Armstrong et al. [2016] model as mÑ 8.
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Corollary 3.1. [Strategy equivalence]

limmÑ8s
˚
xp∆q “ mint1, ∆

e
u, limmÑ8s

˚
yp∆q “ p1´ eq

∆
e

.

Corollary 3.2. [Payoff equivalence]

limmÑ8uxp∆q “

$

’

’

’

&

’

’

’

%

∆
e

∆
e
ă 1

1 otherwise

and limmÑ8uyp∆q “

$

’

’

’

&

’

’

’

%

p1´ eq∆
e

∆
e
ă 1

1´ e otherwise

.

5. Information hazards

In this section, we present comparative statics. Due to the complexity of the expression of

the density function, we turn to numeric simulations to present our results.14

5.1 Information hazards

As in Armstrong et al. [2016], we are interested in the role of information in altering disaster

risk. Changing information states can make the race more dangerous; we seek to understand

how this interacts with the decisiveness parameter m. We present two primary sets of results,

both illustrated in Figure 1. First, across most parameter values, the expected disaster risk

is increasing with m. We prove strong versions of this statement for the no information case

and private information case and a weaker statement for the public information case. This

is to be expected; the more expected value cutting corners in safety has in winning the race,

the more likely players are to do so.15

14For the public information case, we a modified version of the computational solution implemented by Muller
et al. [2021].

15Though our statement for public information is relatively weaker, we note that in simulations of “reason-
able” parameter values, such as those simulated in 1. risk sharply increases with decisiveness in the public
information case as well, only mildly decreasing as m increases from 20 to 8.
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Proposition 4. In the no information and private information scenarios, risk always in-

creases with decisiveness, unless risk is 0. In the public information scenario, risk is higher

at m “ 8 than as mÑ 0.

The second set of results characterizes how the information environment interacts with

the decisiveness parameter. As we shall see, the conclusions regarding information hazards

in Armstrong et al. [2016] are dependent upon decisiveness. In the model, moving to a

more open information state can increase the risk of disaster. This is what Bostrom [2011]

refers to as an information hazard, or any “risk that arises from the dissemination or the

potential dissemination of (true) information that may cause harm or enable some agent to

cause harm.” Consistent with Armstrong et al. [2016], we find that the no information state

is always safer than the other two information states. We formally verify that these results

are robust to m in the next two propositions.

Proposition 5. The no information scenario is always safer than the private information

scenario, unless risk under both scenarios is 0.

Proposition 6. The no information scenario is weakly safer than the public information

scenario.

The most interesting case, however, is the comparison between the public and private

information states. Armstrong et al. [2016] find that when µ and e are large, the no informa-

tion state is safest, followed by the private information state and then the public information

state. However, we show that this result is dependent upon m. For large values of m, their

results hold. However, as m begins to decline, we see in Figure 1 that the public information

scenario becomes safer than the private information scenario. Finally, as m tends to 0, we
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Figure 1: Disaster risk (µ “ 1.44, e “ 0.9)

see that in both cases, players are unwilling to take any risk and implement at the maximum

safety level. We present this result formally.

Proposition 7. The relative safety of the public and private information scenarios depends

on m.

Now we turn to the disaster risk. Consider Figure 1, where we see that the information

hazard only obtains for m ą 6. Two forces drive this result. Note that the decisiveness

parameter m enters into the disaster risk function in two places: the contest success function

and the equilibrium safety choices of the players. To see how these forces affect risk, consider

the drivers of risk when mÑ 8 in Armstrong et al. [2016]. In the public information case,

they show that when n “ 2, the public information case is riskier than the private information
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case as long as

µ ą
pe` 1q3 ` e2

3e
(3)

In the public information case, risk is driven by cases in which the laggard is close behind

the leader in capability; the probability of the leader and laggard being relatively close

decreases linearly as µ, the upper bound on the capability-type distribution, increases.16 In

the private information case, risk is caused by low-capability winners. The probability that

the winner has a relatively low capability decreases quadratically as µ increases. Thus, when

m “ 8 and µ is sufficiently large, the public information case is most dangerous. Now fix µ

and consider what happens as m tends to 0. In both cases, there is an increased probability

that the laggard wins, which by itself would increase overall risk. However, players also

see a lower expected return to reducing safety investments, which implies lower risk. In the

public information state, when players are close in capability, they will continue to implement

relatively risky strategies. In other cases, players know that they are far apart in capability

and will increase safety relatively quickly as m falls. In contrast, in the private information

state, players are always uncertain about the capability of their rivals. As a result, they

never know that one player is effectively out of the running, and are thus less willing to

increase safety investments either when their capabilities are relatively low or when they are

relatively high - even when decisiveness is relatively low. In this state, the impact of m on

the CSF is stronger. These effects are illustrated in Figure 2. In this figure, we simulate

a race in which µ “ 1, e “ 0.9. We fix xj “ 0.5 and consider what happens to expected

16Note that a larger µ implies that relative capability is likely more significant than relative corner-cutting in
determining the winner of the contest.
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safety when we vary xi. In the public information case, the race is most dangerous when

xi “ xj “ 0.5. Both the leader and laggard cut corners in order to win, especially when

decisiveness is high. However, in the private information case only low-capability players

have a large incentive to cut corners. Though this varies with decisiveness, the rate at which

safety decreases as decisiveness increases is considerably lower than in the public information

case because 1) players never know they are close in capability, which is the condition that

produces the dramatic increase in risk as decisiveness increases in the public information

case, 2) low-capabilities types still have some uncertainty about whether they will indeed

lose, and 3) the leader is fixed at xj “ 0.5, so the risky laggard is unlikely to win. Overall,

then, these forces produce a result in which disaster risk declines relatively more quickly with

m in the public information case than in the private information case, serving to reverse the

information hazard in less decisive races.17

As stated in Propositions 5 and 6, the no information case is weakly safest. It turns out,

then, that knowing one’s own capability does not increase welfare. When actors do not, just

as in cases with low decisiveness, players are quite uncertain about the returns to their own

efforts. Cutting corners on safety is not worth it in these cases. In the no information case,

with a uniform type distribution, the probability that players’ capability levels are within δ

of one another is
´

δ
µ

¯2

, and the chance of being a laggard is 1
n
. Players know their opponents

are facing the same uncertainties. The combination of these two forces, therefore, means that

the no information case is weakly safest even though risk also goes to zero when decisiveness

is sufficiently low.

17In Appendix C, we show the size of the information hazard by plotting each difference in risk between
information states.
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Figure 2: Expected safety of the race winner (µ “ 1, e “ 1, xj “ 0.5)

6. Alternative safety provision function

This section lays out results when risk is determined by the choices of both the winner and

the loser of the technology competition. As discussed in the introduction, we relax the

extreme assumption of the Armstrong et al. [2016] model that the winner of the race is the

sole source of risk, and allow the overall risk level to depend on the weighted sum of agents’

safety efforts. This generalization mirrors real world races better, and raises a couple of

important theoretical questions: 1) How does the likely winner’s safety investment change

now that her optimal strategy depends on the likely loser’s safety investments, and 2) How

does the structure of the safety provision burden affect agents’ incentive to win the race and

the overall level of risk? As in the main section, we discuss the research question in the

framework of a two agent game in each of the three information contexts (no information,
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private information, and public information). For ease of reference, we reiterate equation

(2), where γ is the relative impact of player i’s choices on the overall level safety, given that

player i is the competition winner.

ŝi “ γsi `
1´ γ

n´ 1

ÿ

j‰i

sj

6.1 No information case

In the no information case in which the agents are unaware of both the opponent’s and her

own endowed capability, the symmetric equilibrium dictates that all agents exert the same

level of safety efforts as in the main section when γ “ 1. When the competition loser’s safety

efforts–or lack thereof–also affects disaster risk, we find that the equilibrium safety efforts

unambiguously decreases.

Proposition 8. In the no information case, the equilibrium level of safety efforts in a

symmetric BNE of pure strategies is given by:

s˚H “ mint1,
γ ` p1´ γqp1´ eq

2eEx

`

fpcq
˘ u

The less safety is determined exclusively by the winner, the more the agents are willing

to sacrifice safety to increase the chance of winning the race. In addition, we find that the

amount by which the safety efforts decrease is linear in γ and is unaffected by the enmity

level e. In other words, although the level of safety provision changes with the enmity level,

the amount by which it changes with changing γ in the system is not dependent on the

enmity level. Corollary 8.1 specifies the implied disaster risk.
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Corollary 8.1. In the no information case, the expected level of disaster risk is:

DH “ maxt0, 1´
γ ` p1´ γqp1´ eq

2eE
`

fpcq
˘ u

6.2 Private information case

Under the private information scenario, the agents are aware of their endowed capability

and how rare it is compared to the general population, while still unaware of the opponent’s

capabilities. In this case, as in the main section, the agents’ strategy of how much to invest

in safety will depend on their capabilities. Proposition 9 characterizes the equilibrium safety

investments.

Proposition 9. In the private information case, the equilibrium level of safety efforts in a

symmetric BNE of pure strategies is given by:

s˚privatepxiq “ mint1,

şxi
x

Ωpcq
e

γ´p1´eqp1´γqdc

Ωpxiq
e

γ´p1´eqp1´γq

u

where Ωpxiq “ p1´ eqp1´ γq ` pγ ´ p1´ eqp1´ γqqF pxiq

Unlike in Proposition 2, s˚privatepxiq is not an equilibrium for all xi P supppCq.
18 The

following two corollaries establish the uniqueness of x and the behavior of xi ă x.

Corollary 9.1. When γ ă 1, if x exists, it is a convex set in R.

Corollary 9.2. When xi ă x, s˚privatepxiq “ 1.

18Our proofs for Propositions 2 and 8 rely on the initial condition that s˚pxq “ 0. This cannot be a symmetric
equilibrium for e ą 0, as players have incentive to deviate to s˚pxq ą 0. Noting that P rxi “ xs “ 0,
we maintain that players hold this assumption in order to perform comparative statics with the model in
Armstrong et al. [2016]. We leave it to future work to relax this assumption.
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Although the expression is too complicated to elicit general intuition from, we can get

insight into the effect of γ on the equilibrium effort when enmity levels are extreme. When

e “ 0, and the agents do not mind whether they or their opponent successfully builds

the technology, Proposition 9 dictates that s˚private “ 1. When e “ 1, and the agents are

indifferent between disaster and victory for their adversaries, s˚private “
ş

F pxq
1
γ dx

F pxq
1
γ

. Remember

from Proposition 2 that when e “ 1, the equilibrium safety effort level was
ş

F pxqdx

F pxq
. As γ

falls, more equilibrium safety comes from the loser. This produces a moral hazard effect, in

which highly capable actors choose lower safety levels because their returns to doing so are

lower. In addition, when enmity starts to tend away from 1, low capability players put more

effort into safety, since even the loser’s safety choice matters in her utility function19. This

produces an additional selection effect. Compared to the case when γ “ 1, moderately high

capability players are now the most risky. Since they are more likely to win, this increases

overall disaster risk. In sum, in an environment where the enmity level is high, having safety

risk be dispersed between the winner and the loser actually makes agents put less effort into

safety.

The calculation of the disaster risk under the private information case as well as the

equilibrium outcome under the public information case is too involved to provide analytic

solutions. Instead, we present simulated results and discuss them in the following subsection.

19Indeed, for low enough e, γ, low capability players deviate to the corner solution s˚pxq “ 1. For example,
for γ ă 1´2e

2´e , all xi ď Erxis “ µ
2 play s˚pxq “ 1.
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6.3 Public information case and simulation results

Figure 3 presents the disaster risk for γ P r0.5, 1s for the same parameters we used in

simulations in Section 5 (e “ 0.9, µ “ 1.44) under high (m “ 10) and moderate (m “

5) values of decisiveness. We see that, as in the no information and private information

cases, disaster risk is monotonically decreasing in γ in the public information case as well.20

Similar to the other cases, the same selection effect and moral hazard effects apply. As γ

is lowered, the loser contributes more to overall risk. Since the loser is more likely to have

lower capabilities than the winner, and thus also to invest less in safety in order to win,

this serves to increase risk. Likewise, as other players contribute less to overall safety, each

faces a temptation to shirk in their safety investments, similar to the moral hazard problem

in standard public goods scenarios with weighted-sum provision technologies [Buchholz and

Sandler, 2021]. Reduced investments in safety by others lowers the expected return on safety,

even for actors that are likely to win the race.

7. Additional comparative statics

We now turn to comparative statics on the two remaining parameters of the model, enmity

(e) and performance (µ).

20In the public information case for γ P r0, 0.5s, risk is increasing in γ. However, we argue that this is
unrepresentative of real-world scenarios, as it is unlikely that an actor who fails to implement TAI or other
new technology contributes more risk than an actor who attempts implementation. Full results are presented
in Appendix C.
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Figure 3: Varying safety contributions of the winner

7.1 Effects of enmity

The enmity parameter characterizes the opportunity cost of one’s rival winning the race.21

Increased enmity increases the opportunity cost of losing the race. When states are more

intense rivals, they are more willing to cut corners to develop TAI. This is one of the reasons

the United States government ignored some of Oppenheimer’s concerns over the development

of the atomic bomb: they feared Germany winning the race.22 Presumably, the US would

not have taken on the same level of risk had the UK been developing a nuclear bomb instead.

Results are presented for the public information case in Figure 4 for high and low values

of enmity and of gamma. In all cases, increased enmity results in higher disaster risk. Higher

21This is consistent with common approaches to rivalry in international relations theory. See, for instance,
Hensel et al. [2000] and Goertz and Diehl [1995].

22Ord [2020].
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values of m and lower values of γ increase the concavity of the curve. In highly decisive races

or races in which both the winner and loser share approximately equal safety burdens, a race

can quickly become maximally dangerous even when enmity is still low. In addition, we see

an interaction effect: for low γ and high m, enmity is more harmful than if only one of these

conditions are met. Results for the no information and private information cases are similar

and are presented in Appendix C. Qualitatively, then, the results in Armstrong et al. [2016]

for enmity hold in this broader set of environments but these environments influence how

harmful enmity is.
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Figure 4: Effects of enmity under public information (µ “ 0.72)
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7.2 Effects of type distribution

Next, we turn to analyzing the effects of performance, parametrized by µ.23 In the model,

µ represents the relative importance of performance to safety; if µ ą 1, performance is

more important than cutting corners on safety to the outcome of the race. However, µ

also represents the variance of players’ performance levels. For smaller values of µ, players

are more likely to be close together in performance, increasing the chance of a highly com-

petitive race. In the Armstrong et al model, increasing µ always reduces the disaster risk,

as BV arpGpxiqq
Bµ

“ B

Bµ
µ2

12
“

µ
6
. We find that the magnitude of the effect is moderated by the

decisiveness parameter. Results are presented in Appendix C. Though the risk is always

nonincreasing in µ, the effect is larger for larger values of the decisiveness parameter m un-

der all information states. Likewise, a larger value of γ increases risk for a fixed value of µ.

In the no information and private information cases, a lower γ merely shifts the curve up,

increasing risk at each value of µ. In the public information case, the curve is less steep -

higher γ lessens the impact of µ. That is, in the public information case, the marginal effect

of a higher variation in performance is lower when there is more safety weight on the loser

than when the winner is the sole source of risk.

8. Discussion and conclusion

In the introduction, we suggested that the sources of risk in the Armstrong et al. [2016] model

may not be representative of real-world technology races. The first factor that affects these

23We can generalize the effect of µ to consider other type distributions and their corresponding parameters.
In Appendix B, we derive results on equilibrium safety levels as arbitrary type distributions are varied in
the sense of first-order stochastic dominance.
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results is the decisiveness parameter. In less decisive races, the information hazard vanishes,

and sharing information about capabilities is welfare-improving. This is because, when the

returns to risk-taking are relatively low, actors are reluctant to take risks if they realize they

are far apart; only if actors come to realize they are close in capability will there be a race

to the bottom. As a result, when forecasting the sources of risk for technology competitions,

it remains important to research plausible paths through which TAI and other powerful

technologies may be developed [Dafoe, 2017]. It is helpful to consider two cases, one in which

the decisiveness parameter m is large or increasing without bound and another in which m is

small. In the former case, the space of viable paths to TAI is relatively well-known. Currently,

for example, we see large and relatively predictable gains from training deep learning models

on ever larger amounts of data using increasing amounts of compute [Thompson et al.,

2020]. If researchers realize that scaling up existing algorithms on larger training sets using

ever larger numbers of GPUs will produce TAI, then differences in performance between

leading teams may be highly decisive, particularly if transformative properties are expected

to emerge suddenly once a certain scale is reached. In this case, according to the dynamics

represented in the model, it is risk-reducing if AI teams or states are able to obscure their

own performance to prevent dangerous races. In the latter case, the space of paths to TAI

is relatively large. This maps to many real-world research scenarios, in which the space of

possible ideas is increasing, driving down researcher productivity, as recent literature has

shown to be the case [Agrawal et al., 2019a, Bloom, 2020].24 Bostrom [2014] expresses

concern about random, discontinuous progress in AI. Counterintuitively, from the point of

24This depends on the set of new general-purpose technologies growing at a slower rate than the decline in
researcher productivity. If AI becomes a GPT before it becomes superintelligent [Agrawal et al., 2019a],
then this trend may not hold.
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view of a multiagent development race, we suggest that such a situation may actually be

safer than a more deterministic production process since it will induce firms or states to

take fewer risks.25

Whether the actions of actors who will not win the technology competition contribute

to risk is a second important factor influencing overall risk from competition. We show

that as the choices of losers become more impactful, the race becomes more dangerous. In

these scenarios, actors face a more traditional Prisoner’s Dilemma scenario, in which each

is tempted to shirk on safety provision because they do not bear the full benefits of their

safety investments yet absorb all of the costs. To the extent that race losers contribute to

risk, a multilateral regulatory regime may be required that takes into account the greater

willingness of race laggards to cut corners on safety.

We hope that the findings of our model can be extended in a number of directions

and therefore suggest directions for future research. First, we assume that the information

partitions are given exogenously. In the real world, however, actors may choose to share

information or close off development to increase their own chances of winning the race.

Technology firms often face a dilemma: research publications and capability demonstrations

garner prestige and attention that can be necessary to raise funds for further operations;

yet, they also aid the efforts of competitors. An important extension would be to endogenize

these decisions to understand how they affect disaster risk. This would assist actors maing

decisions about how open to be, for instance about the publishing of source code for advanced

AI models. OpenAI faced this question with its GPT-3 language model, deciding against

25Note that this model still assumes that actors always know what “AI safety” looks like and can therefore
optimize for it. When the race is more noisy, perhaps one can expect the productivity of certain types of
safety research to be more noisy as well.
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publication, but Meta recently released the source code of a model designed to replicate GPT-

3.26 In addition, we can analyze scenarios in which actors can partially reveal information

or uncover information about rivals, since this likely mirrors real world dynamics between

firms and states. Second, our model makes two restrictive assumptions about safety research:

that safety research is linear in reducing performance and that the effects of safety research

are known. Trager et al. [2021] allows the safety-performance tradeoff to vary, finding that

actors choose higher safety levels when the tradeoff is more concave. It is likely to be

particularly important to develop models with an explicit price of safety which is a function

of the level of performance. Lower returns to safety relative to performance could also be

a result of uncertainty. For a risk averse agent, more uncertainty over safety research will

reduce investment in safety, making the race more dangerous. Third, our model considers

decisiveness to be exogenous. Instead, we might expect it to vary over time, as the innovation

literature suggests. Therefore, extending the model to a dynamic game in which decisiveness

varies over the course of the race might yield insights. Fourth, it may be important to

analyze the effect of information in a dynamic context where agreements are possible. Here,

information plays a different role, sometimes allowing actors to increase general welfare by

conditioning their strategies on each other’s behavior [Stafford and Trager, 2022].

Our model contributes to understanding the role of information and uncertainty in qual-

itative arms races showing that the decisiveness of the race can change the qualitative and

quantitative effects of information. We hope that these insights, when combined with others,

are not only theoretically useful but can be used to improve policy decisions so that advanced

technologies are developed for the benefit of all.

26See Zhang and Diab.
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Appendix A: Proofs

On the definition of the random variable Ci. First, we note that a logistic contest success

function corresponds to Gumbel-distributed noise [Ryvkin and Drugov, 2020, McFadden,

1974]. Therefore, we can represent each i’s type with the random variable Ci “ Xi ` Vi ´

Vj, where Xi „ Uniformp0, µq and Vi, Vj „ Gumbelp1, 1
m
q, where m is the decisiveness

parameter.

Fn´1pcq “ Prpall ci ă cq

Now, conditional on vj, ci are independent for all i. We now solve for F pcq:

F pcq “ Prpci ă c|vjq “ Prpxi ` vi ´ vj ă cq

Finally, we have

Fn´1pcq “ F n´1
pcq

Next, to simplify calculations, we show that Vi ´ Vj „ Logisticp0, 1
m
q. To prove that

these distributions are identical, it suffices to show that the moment-generating functions

are identical [Hogg et al., 2012].

The MGF of two independent Gumbelp1, 1
m
q-distributed random variables is

MVi´Vjptq “MViptqMVjp´tq “ Γp1´
1

m
tqetΓp1`

1

m
tqe´t “ Γp1´

1

m
tqΓp1`

1

m
tq
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The MGF of a Logisticp0, 1
m
q-distributed random variable is

Mptq “
Γp1´ 1

m
tqΓp1` 1

m
tq

Γp2q
e0˚t

“ Γp1´
1

m
tqΓp1`

1

m
tq “MVi´Vjptq @t P p´m,mq

Therefore, the random variable of interest becomes Ci “ Xi ` Yi, where Yi ” Vi ´ Vj „

Logisticp0, 1
m
q. Now the problem simplifies to calculating F pcq. The CDF of the sum of

independent random variables W “ U ` Y is given by the convolution

Fwpwq “ pFU ˚ FY qpwq “

ż

FUpw ´ yqfY pyqdy

Substituting in our random variables, we have

FCpcq “ pFX ˚ FY qpcq “

ż

FXpc´ xqfCpxqdx “
1

µ

ż µ

0

1

1` e´mpc´x´1q
dx

To complete the proof, recall that Fn´1pcq “ F n´1pcq.

Finally, to calculate fpcq, we just take the derivative of F pcq with respect to c, giving

fpcq “
1

µ

ż µ

0

m ¨ e´mpc´x´1q

p1` e´mpc´x´1qq2
dx
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Proof of Proposition 1. The utility of player i is given by

uipsi|s´iq “ Prpi winsqsi ` p1´ eq
ÿ

k‰i

Prpk winsqsk

“ p1´
ÿ

k‰i

Prpk winsqqsi ` p1´ eq
ÿ

k‰i

Prpk winsqsk

“ si `
ÿ

k‰i

Prpk winsqpp1´ eqsk ´ siq

Using Ek as the expectation over the realizations of ck and by the law of iterated expec-

tations, we get the following expression for expected utility:

uipsiq “ si ` E
´

ÿ

k‰i

Prpk winsqpp1´ eqsk ´ siq
¯

“ si `
ÿ

k‰i

EkpPrpk wins|ckqqpp1´ eqsk ´ siq

From the definition of Ci,

Prpk wins|ckq “ Prpcj ď ck ´ sk ` sj @j|ckq

“ Prpxj ` vj ď ck ´ sk ` sj @j|vi, ckq

“ Prpxj ` vj ´ vi ď ck ´ sk ` sj @j|ckq

“ Prpxj ` vj ´ vi ď ck @j|ckq “ Fjpckq

Where we exploit conditional independence of vj’s on vi, and the symmetry of strategies.
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Plugging into our utility function gives

uipsiq “ si `
ÿ

k‰i

EkrFn´1pckqspp1´ eqsk ´ siq

Taking the first order conditions gives

Buipsiq

Bsi
“ 1´

ÿ

k‰i

EkrFn´1pckqs `
ÿ

k‰i

EkrFn´2pckqfpckqspp1´ eqsk ´ siq “ 0 (4)

We again use symmetry to obtain

1´ pn´ 1qErFn´1pcqs ´ espn´ 1qErfpcqFn´2pcqs “ 0

Recalling that we are considering the case where n “ 2, we have

s˚i “
1´ ErF pcqs
2eErfpcqs

Note that since si “ s˚´i ” sH, we have ErF pcqs “ 1
2
. Recalling that s˚H P r0, 1s, we have

sH˚ “ mint
1

2eErfpcqs
, 1u

Now we show that this expression is a local maximum for all parameter values. Taking

the derivative of (4), we have
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B2uipsiq

Bs2
i

“ ´2
ÿ

k‰i

EkrfipckqFn´2pckqs

`
ÿ

k‰i

Ekr
B

Bs
fipckqFn´2pckqsp´esq

Exploiting the symmetry of strategies, we have

B2uipsiq

Bs2
i

“ ´2pn´ 1qErfpcqFn´2pcqs ´ espn´ 1qErf 1pcqFn´2pcqs (5)

Evaluating the above at s˚H obtained in proposition 1 and considering the case when

n “ 2, we find that s˚H is a local symmetric BNE when the following holds:

B2uipsiq

Bs2
i

“ ´2

ż 8

´8

fpcq2dc´

ş8

´8
f 1pcqfpcqdc

2
ş8

´8
fpcq2dc

ď 0

Exploiting the symmetry of the PDF in the definition of Ci and using integration by

parts, we have

Erf 1pcqs “
f 2pcq

2

ˇ

ˇ

ˇ

8

´8
“ 0

Therefore, we can simplify the second order condition as

B2uipsiq

Bs2
i

“ ´2

ż 8

´8

fpcq2dc
looooomooooon

ě0

ď 0

This expression always holds.
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Proof of Corollary 1.1. Since all players are implementing the same safety level s˚H given

by Proposition 1, the total expected probability of an AI disaster is 1 ´ s˚H “ maxt0, 1 ´

1
2e

ş8

´8
fpcq2dc

u.

Proof of Proposition 2. We prove the existence by construction. Define kpxiq “ xi´ spxiq as

our choice variable. We assume and confirm that kp¨q is an increasing function, which means

that the agent with higher innate capability ends up performing better.

Then the expected utility of player i is given by

uipkpxiqq “ xi ´ kpxiq `

ż 8

k´1pkpxiqq

pp1´ eqpc´ kpcqq ´ pxi ´ kpxiqqqfn´1pcqdc

Taking the first-order conditions gives

Buipkpxiqq

Bkpxiq
“ ´1`

B

Bkpxiq

ż 8

k´1pkpxiqq

pp1´ eqpc´ kpcqq ´ pxi ´ kpxiqqqfn´1pcqdc

Now we evaluate the integral term.

Note that
ş8

k´1pkpxiqq
pp1 ´ eqpc ´ kpcqq ´ pxi ´ kpxiqqqfn´1pcqdc “ Ip8q ´ Ipk´1pkpxiqqq,

where Ipcq is the anti-derivative of the integrand with respect to c.
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Then we have

B

Bkpxiq

ż 8

k´1pkpxiqq

pp1´ eqpc´ kpcqq ´ pxi ´ kpxiqqqfn´1pcqdc

“
B

Bkpxiq
Ip8q ´

B

Bkpxiq
Ipk´1

pkpxiqqq

“
B

Bkpxiq
kpxiqFn´1p8q ´

B

Bkpxiq
Ipk´1

pkpxiqqq

“ Fn´1p8q ´
B

Bkpxiq
Ipk´1

pkpxiqqq

Note that Fn´1p8q “ 1. Using the chain rule, we have

1´
B

Bkpxiq
Ipk´1

pkpxiqqq

“ 1´ Fn´1pk
´1
pkpxiqqq ´

„

p1´ eqpc´ kpcq ´ pxi ´ kpxiqqqfn´1pcq



c“k´1pkpxiqq

¨
B

Bkpxiq
k´1
pkpxiqq

By the implicit function theorem, we know B

Bkpxiq
k´1pkpxiqq “

1
k1pk´1pkpxiqqq

, where k1 :“

k1pcq “ 1´ s1pcq.

Plugging back into the first-order conditions gives

Buipkpxiqq

Bkpxiq
“ 0

“ ´Fn´1pk
´1
pkpxiqqq

´ rp1´ eqpk´1
pkpxiqq ´ kpxiqq ´ pxi ´ kpxiqqsfn´1pk

´1
pkpxiqqq

1

k1pk´1pkpxiqqq

Applying symmetry of strategies gives kpxiq “ kjpxiq ” kpxiq. Therefore, k´1pkipxiqq “

k´1pkpxiqq “ xi.
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This allows us to simplify to

Buipkpxiqq

Bkpxiq
“ 0 “ ´Fn´1pxiq ` epxi ´ kpxiqqfn´1pxiq

1

k1pxiq
(6)

We know that a general linear ordinary differential equation has the form

y1pxq ` ppxqypxq “ qpxq, with solution ypxq “ 1
rpxq

ş

rpxqqpxqdx` Constant
rpxq

, where

rpxq “ e
ş

ppxqdx.

We can therefore express our FOC ODE as:

kpxiq “
1

rpxiq

ż x

x

rpxiqqpxiqdxi `
const

rpxiq

where rpxiq “ e
ş

e
fn´1pxiq

Fn´1pxiq
dxi
“ pmµFn´1pxiqq

e

ñ kpxiq “
1

pFn´1pxiqqe

ż xi

x

ecpFn´1pcqq
e´1fcpxiqdc`

const

pmµFn´1pxqqe
` limcÑxpkpcq ´ cq

pmµFn´1pcqq
e

pFn´1pxiqqe

“
1

pFn´1pxiqqe
`

pFn´1pxiqq
e
¨ xi ´

ż xi

x

pFn´1pcqq
edc

˘

`
const

pmµFn´1pxqqe

` limcÑxpkpcq ´ cq
pmµFn´1pcqq

e

pFn´1pxiqqe

where we mapped px, ypxq, ppxq, qpxqq to pxi, kpxiq, e
fn´1pxiq
Fn´1pxiq

, e fn´1pxq
Fn´1pxq

xq.

Bringing the notation back to spxiq terms again:

spxiq “

şxi
´1
pFn´1pcqq

edc

pFn´1pxiqqe
`

const

pmµFn´1pxqqe
` limcÑxspcq

pmµFn´1pcqq
e

pFn´1pxiqqe

Where we note that the initial condition spxq “ 0 gives that the constant term goes to

0. Note that the ODE must hold for all xi P rx, µs. Otherwise, the FOC fail to produce a

local maximum. We conjecture that x “ ´8 and verify this using the SOC.
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Finally, recall that sipxiq P r0, 1s. Therefore, the equilibrium symmetric BNE in the two

player game is given by

s˚privatepxiq “ mint

şxi
´8
pFn´1pcqq

edc

pFn´1pxiqqe
, 1u

To check that such local optimum is indeed a maximum, we check the second order

condition:

B2uipkiq

Bk2
i

“ ´
BP pkiq

Bki
` exi

B2P pkiq

Bk2
i

´ e
BP pkiq

Bki
´ eki

B2P pkiq

Bk2
i

Where we define P pkpxiqq :“ F pciq. The second order condition therefore boils down to

s˚pxq
f 1pxq

fpxq
ď 1`

1

e

Which always holds for the given s˚pxq when x „ Uniform distribution.

Proof of Corollary 2.1. Letting Gpxq denote the CDF of xj, we calculate the expected value

of the winner’s chosen safety efforts by multiplying for each agent: gpxq – the probability

that an agent is given performance x, P(he wins), and spxq – the safety efforts chosen by

that agent.

Dprivate “ 1´ 2 ¨

ż µ

0

spxq ¨ Ppx is the winnerq ¨ gpxqdx

Since we assumed in Proposition 2 that ki is an increasing function of x, the probability

that an agent with capability x wins the race is simply F pxq.
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Dprivate “ 1´ 2 ¨

ż µ

0

spxqF pxq
1

µ
dx

Proof of Proposition 3. Denote the difference between the highest capability level, x, and

the second-highest, y, as ∆ ” x´ y.

The utility functions are given by

uxp∆q “ sx
1

1` emp´∆`sx´syq
` p1´ eqsyp1´

1

1` emp´∆`sx´syq
q

uyp∆q “ sy
1

1` emp∆`sy´sxq
` p1´ eqsxp1´

1

1` emp∆`sy´sxq
q

Taking first order conditions, we obtain

Buxp∆q

Bsx
“

1

1` emp´∆`sx´syq
´ sx

memp´∆`sx´syq

p1` emp´∆`sx´syqq2
` p1´ eqsy

memp´∆`sx´syq

p1` emp´∆`sx´syqq2

Buyp∆q

Bsy
“

1

1` emp∆`sy´sxq
´ sy

memp∆`sy´sxq

p1` emp∆`sy´sxqq2
` p1´ eqsx

memp∆`sy´sxq

p1` emp∆`sy´sxqq2

Setting these equations equal to 0 and simplifying, we obtain
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1` p1´msx `mp1´ eqsyqe
mp´∆`sx´syq “ 0

1` p1´msy `mp1´ eqsxqe
mp∆`sy´sxq “ 0

We solve the above implicitly for s˚yp∆q, s
˚
xp∆q, respectively, to obtain

s˚yp∆q “
p1´ eqW p´ em∆´msx´msx{pe´1q`1{pe´1q

e´1
q ´msx ` 1

mpe´ 1q

s˚xp∆q “
p1´ eqW p´ e´m∆´msy´msy{pe´1q`1{pe´1q

e´1
q ´msy ` 1

mpe´ 1q

where W p.q represents branch 0 of the Lambert W function.

Proof of Corollary 3.1. We show that s˚yp∆q, s
˚
xp∆q converge to their values in Armstrong

et al. [2016] as m Ñ 8. We first take the limit of s˚yp∆;mq as m Ñ 8. Using l’Hopital’s

rule, we obtain

limmÑ8syp∆q “ limmÑ8

p1´ eqW p´ em∆´msx´msx{pe´1q`1{pe´1q

e´1
q ´msx ` 1

mpe´ 1q

“ limmÑ8

p1´ eqp∆´ sx ´
sx
e´1
q

W p´ em∆´msx´msx{pe´1q`1{pe´1q

e´1
q

W p´ em∆´msx´msx{pe´1q`1{pe´1q

e´1
q`1
´ sx

e´ 1

“
´sx ` p1´ eqp∆´ sx ´

sx
e´1
q

e´ 1

“ sx ´∆
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We plug this value into the first-order condition for sy to obtain

limmÑ8
1

m
` p

1

m
´ sy ` p1´ eqsxqe

mp∆`sy´sxq “ limmÑ80

sx ´∆` p1´ eqsx “ 0

sxp∆q “
∆

e

This is the value of s˚xp∆q given in Armstrong et al. [2016]. To see that player y’s

strategy converges, note that player x chooses sx such that y is indifferent between tying x

and abstaining: x´ sx “ y ´ sy ñ sy “ sx ´∆.

Proof of Corollary 3.2. From Tullock [2005], we know that

limmÑ8
empxi´siq

ř2
j“1 empxj´sjq

“

$

’

’

’

&

’

’

’

%

1 if xi ą xj

0 if xi ă xj

Plugging this limit back into each player’s utility functions completes the proof.

Proof of Proposition 4. To simplify notation, denote Fa as the derivative of the distribution

function F with respect to parameter a. First, consider the no information case. Differenti-
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ating the unbounded version of the safety expression in 1 with respect to m yields

BsH
Bm

“
´2e

ş

2fpcqfmpcqdc

4e2Erfpcqs2

“
´
ş

2fpcqfmpcqdc

2eErfpcqs2

We note that all of the terms are positive expect perhaps fmpcq. Differentiating fpcq

pointwise, we have

Bf

Bm
“

1

µ

ˆ

2µ` p1´
1

e2cm
qp

ce´cm

1` e´2cm
q ` p1´

1

empµ´cq
qp
pµ´ cqempµ´cq

1` e2mpµ´cq
q

˙

ą 0

Thus, plugging this expression into our derivative and adding bounds

BsH
Bm

ď 0

Next, consider the private information case. We take the derivative of the unbounded

version of the safety expression in 2.

Bsprivatepx;mq

Bm
“
pF pxqe B

Bm

ş

F pcqedcq ´ eF pxqe´1Fmpxq
ş

F pcqedc

F pxq2e

“

B

Bm

ş

F pcqedc´ eF pxq´1Fmpxq
ş

F pcqedc

F pxqe
ă 0

Adding in bounds, we have

Bsprivatepx;mq

Bm
ď 0
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Finally, we consider the public information case. We consider the limit of sxp∆q, syp∆q

as m goes to 0.

limmÑ0syp∆q “ limmÑ0

p1´ eqW p´ e´m∆´msy´msy{pe´1q`1{pe´1q

e´1
q ´msy ` 1

mpe´ 1q
“ 1

limmÑ0syp∆q “ limmÑ0

p1´ eqW p´ em∆´msx´msx{pe´1q`1{pe´1q

e´1
q ´msx ` 1

mpe´ 1q
“ 1

Likewise, we use the expressions for safety when m “ 8 in 3.1 to note that

PpDpublic “ 1q “ 1´ Ppsx∆ “ 0X sy∆ “ 1q “ 1´ Pp∆ “ 0q “ 0

Thus, we conclude that

Erspublicp∆;m “ 8qs ą Erspublicp∆;m “ 0qs

Proof of Proposition 5. We first establish that sprivatepxiq is a weakly increasing function of

xi. Taking the derivative of the safety expression in Proposition 2 with respect to xi yields:

Bsprivatepxiq

Bxi
“
F pxiq

2e ´ e
ş

F pxiqdxiF pxiq
e´1fpxiq

F pxiq2e

“ 1´ sprivatepxiq
efpxiq

F pxiq
ě 0

Since sprivatepxiq is non-decreasing in xi, if sH ą sprivatepµq, it automatically follows that

sH ą sprivatepxq for any x.
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Since sH is constant for all xi, it remains to show that

sH ´ sprivatepµq “
1

2eErfpcqs
´

şµ

´8
F pxiq

edxi

F pµqe
ě 0

Calculations reveal that this expression always holds for m ą 0.

Note that while disaster risk under the no information scenario is constant at 1 ´ sH,

disaster risk under the private information is bounded below by 1 ´ sprivatepµq, which, by

definition, occurs when all parties involved put in maximal safety efforts. Therefore, the

above exposition that sH ą sprivatepµq under all parameters completes the proof that no

information scenario is always safer than the private information, regardless of the players’

position along x.

Proof of Proposition 6. Because of the complexity of the implicit function defining s˚publicp∆q,

here we provide a graphical proof sketch to demonstrate that

Ers˚Hs ě Ers˚publicp∆qs

holds for all values of e, µ,m. To do this, consider first extreme values of enmity (e “

t0, 0.5, 1u) and a typical value of µ “ 1.44. Figure 5 plots the results. Note that Ers˚H ´

s˚publicp∆qs ě 0 @m.
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Figure 5: Extreme values of enmity (µ “ 1.44)

Next, consider extreme values of the performance parameter (µ “ t0.01, 12.5, 25u) and a

typical value of e “ 0.9. Figure 6 plots the results. Here, too, Ers˚H ´ s˚publicp∆qs ě 0 holds

for all m.

Given that expected safety under no information is always at least as large as under

public information for these extreme values of the parameter space, we can be reasonably

certain that this result holds for the entire parameter space.
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Figure 6: Extreme values of performance (e “ 0.9)

Proof of Proposition 7. A numeric example from Figure 1 suffices for this proof. Let µ “

1.44, e “ 0.2, n “ 2. Notice from the following two cases that the relative risk between

private and the public information scenarios depend on the parameters.

Ersprivatepx;m “ 4qs “ 0.6389 ă Erspublicp∆;m “ 4qs “ 0.6885

Ersprivatepx;m “ 7qs “ 0.5549 ą Erspublicp∆;m “ 7qs “ 0.5297
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Proof of Proposition 8 and Corollary 8.1. Denoting pips,xq as probability that i wins given

strategy profile s and capability vector x, we get:

uipsi|sj,xq “ p1´ pjps,xqq ¨ ŝi ` p1´ eq ¨ pjps,xq ¨ ŝj

“ ŝi ` pjps,xq ¨ pp1´ eqŝj ´ ŝiq

“ γsi ` p1´ γqsj

` pjps,xq ¨
`

pp1´ eqp1´ γq ´ γqsi ´ pp1´ eqγ ´ p1´ γqqsj
˘

Taking the FOC with respect to si yields:

Buipsi|sj,xq

Bsi
“ γ ` pp1´ eqp1´ γq ´ γqpjps,xq

`
Bpjps,xq

Bsi

`

pp1´ eqp1´ γq ´ γqsi ´ pp1´ eqγ ´ p1´ γqqsj
loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

´es˚

˘

“ 0

Finally, we utilize symmetry of strategies si “ sj “ s˚, and of winning probabilities

Exppjps
˚, s˚q,xqq “ 1

2
to get:

s˚H “ mint1,
γ ` p1´ γqp1´ eq

2eEx

`

fpcq
˘ u

Since all players implement the same safety level s˚H, the total expected probability of

disaster is given by:

DH “ 1´ s˚H “ maxt0, 1´
γ ` p1´ γqp1´ eq

2eE
`

fpcq
˘ u
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Proof of Proposition 9. Similar to the proof of Proposition 2, it proves convenient to continue

with resulting performance level kipxiq ” xi ´ sipxiq employed by each player i.

The expected utility of a player with capability xi is given by:

uipkipxiqq “ γpxi ´ kipxiqq ` p1´ γq

ż 8

´8

c´ kpcq ¨ fn´1pcq dc

`

ż 8

k´1pkipxiqq

´

pp1´ eqp1´ γq ´ γqpxi ´ kipxiqq ` pp1´ eqγ ´ p1´ γqqpc´ kpcqq
¯

¨ fn´1pcq dc

Taking the FOC with respect to kipxiq yields:

Buipkipxiqq

Bkipxiq
“ ´γ ` pγ ´ p1´ eqp1´ γqq

`
`

pp1´ eqp1´ γq ´ γqF pxiq ` epxi ´ kipxiqqfpxiq
1

k1ipxiq

˘

“ 0

ñ epxi ´ kpxiqqfpxiq
1

k1pxiq
“ p1´ eqp1´ γq ` pγ ´ p1´ eqp1´ γqqF pxiq
looooooooooooooooooooooooooomooooooooooooooooooooooooooon

Ωpxiq

k1pxq `
e ¨ fpxiq

Ωpxiq
kpxiq “

e ¨ fpxiq

Ωpxiq
xi

Following the same ODE and integration by parts steps in Proposition 2 gives:

kpxiq “ Ωpxiq
´ e
γ´p1´eqp1´γq ¨

`

Ωpxiq
e

γ´p1´eqp1´γq ¨ xi ´

ż xi

x

Ωpcq
e

γ´p1´eqp1´γqdc` limcÑxpkpcq ´ cq ¨ Ωpcq
e

γ´p1´eqp1´γq const
˘

spxiq “

şxi
x

Ωpcq
e

γ´p1´eqp1´γqdc

Ωpxiq
e

γ´p1´eqp1´γq

` limcÑxspcq ¨

ˆ

Ωpcq

Ωpxiq

˙
e

γ´p1´eqp1´γq

` const
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Note that we cannot choose x “ ´8, because we must have that both sides of the ODE

hold for all xi P rx, µs. If not limcÑxspcq ¨ Ωpcq
e

γ´p1´eqp1´γq ‰ 0 and it fails to hold. We select

x as the minimum value of x such that the ODE obtains for all xi P rx, µs.

Acknowledging that spxq “ 0 and spxiq is bounded below by 0 yields the final result:

s˚privatepxiq “ mint1,

ş

Ω
e

γ´p1´eqp1´γqdxi

Ω
e

γ´p1´eqp1´γq

u

To check that the local optimum is a maximum, we evaluate the second order condition.

Denoting the probability that a player with performance ki wins as P pkiq and collecting

terms, we have:

B2uipkiq

Bk2
i

“
B2P pkiq

Bk2
i

pxi ´ kiqe´
BP pkiq

Bki
p2γ ` 2e´ eγ ´ 1q

By symmetry of strategies, we have that P pkiq “ F pxiq. The second order condition then

becomes

s˚pxiq
f 1pxiq

fpxiq
ď

1

e
p2γ ` 2e´ eγ ´ 1q

Proof of Corollary 9.1. To solve for x, we conjecture that s˚pxiq takes the form given in

Proposition 9
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s˚pxi, xq “

şxi
x

Ωpcq
e

γ´p1´eqp1´γqdc

Ωpxiq
e

γ´p1´eqp1´γq

For a given x to check whether s˚pxi, xq holds, we turn to the second order conditions.

Denote the function

Ips˚pxq, xq ” s˚pxq
f 1pxq

fpxq
´

1

e
p2γ ` 2e´ eγ ´ 1q

In order for s˚pxi, xq to be a local maximum for some x, we must have that Ips˚pxq, xq ď

0@x P rx, µs. Our optimization problem is then

argminxPsupppCqmaxxPrx,µsIps
˚
pxq, xq

loooooooooooomoooooooooooon

Mpx,xq

s.t. maxxPrx,µsIps
˚
pxq, xq ď 0

We know that Mpx, xq is continuous and differentiable in x [Clarke, 1975]. Taking the

derivative, we have

B

Bx
maxxPrx,µsIps

˚
pxq, xq “Mxpx, xq

looomooon

ě0

«

´
f 1pxq

fpxq

ˆ

Ωpxq

Ωpxq

˙
e

γ´p1´eqp1´γq

ff

loooooooooooooooooomoooooooooooooooooon

ď0

ď 0

So M is weakly decreasing in x. Consider γ ą 0, e ą 0. We have two cases. For γ ě 1´2e
2´e

,
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Mpx, µq “ ´1
e
p2γ ` 2e ´ eγ ´ 1q ď 0. Therefore, by the intermediate value theorem, we

either have x “ ´8 or Mpx, xq crosses 0 at a closed interval. We choose the lower bound

of this integral to be the unique x. Now consider γ ă 1´2e
2´e

. Using the symmetry of fpxq to

note that f 1pxq becomes nonpositive for x ą Ercs “ µ
2
. In this case, we can apply the same

logic above to obtain x. If the SOC are never satisfied on supppCq, then s˚pxq “ 1@x.

Proof of Corollary 9.2. We know that when xi ă x, the FOC do not hold and a corner

solution obtains. Consider s˚pxiq “ 0. In this case uipsiq “ 0. In this case, a player has

a unilateral incentive to deviate to s˚pxIq ą 0, so this is not an equilibrium. Therefore,

s˚pxiq “ 1.

56



Appendix B: Generalizing the effects of type distribu-

tion on risk

Though the main body of our text continues to set Gpxiq „ Uniformp0, µq, our proofs

use a more general type distribution, allowing us to compare how arbitrary player type

distributions affect the overall level of disaster risk, generalizing the results for µ in section

7. We present the following two theorems.

Proposition 10. Consider two non-noise adjusted random variables X1, X2 describing the

distribution of player types with distribution functions X1 „ G1, X2 „ G2. Then expected

disaster risk is lower under X1 than X2 if X1 ďFOSD X2.

Proof of Proposition 10. Let Ck “ Xk ` Vk ´ Vk „ F pCkq for k “ 1, 2, where Vk, Vk „i.i.d.

Logisticp0, 1
m
q as in the main text. From Shaked and Shanthikumar [2007], we know that

FOSD ordering is preserved under convolutions. Next we use the result that X1 ďFOSD X2 ô

E rφpX1qs ď E rφpX2qs for any increasing function φp.q. We therefore show that s˚HpXkq is

a weakly increasing function of X. Assuming that X, fpCq are continuous and taking the

derivative of Proposition 8, we have

Bs˚H
Bx

“
r´γ ´ p1´ γqp1´ eqs 2e plimbÑ8 fpbq

2 ´ limaÑ´8 fpaq
2q

4e2
`

Ex

`

fpcq
˘˘2 “ 0
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Proposition 11. Consider the same random variables X1, X2 as in Proposition 8. Then if

X1 ďFOSD X2 and 1 ě spxq efpxq
Ω

, expected disaster risk is lower under X1 than X2.

Proof of Proposition 11. Let Ck be defined as in Proposition 10. Following the same steps,

we show that s˚privatepxq is an increasing function of x. Assuming that X,F pCq are continuous

and taking the derivative of Proposition 9, we have

Bs˚privatepxq

Bx
“

Ω
2e

γ´p1´eqp1´γq ´
ş

Ω
e

γ´p1´eqp1´γqdx B

Bx
Ω

e
γ´p1´eqp1´γq

Ω
2e

γ´p1´eqp1´γq

“ 1´ spxq
efpxq

Ω

Therefore, expected disaster risk is lower under X1 than X2 if and only if

spxq
efpxq

Ω
ď 1
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Appendix C: Additional Figures

Armstrong et al.
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Figure 7: Information hazard (private info - public info)
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Figure 8: Information hazard (private info - no info)
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