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Abstract

The great powers appear to be entering an era of heightened competition to master
security-relevant technologies in areas such as AI. This is concerning because deploy-
ing new technologies can create substantial shared risks, such as inadvertent crisis
escalation or uncontrolled proliferation. We analyze a strategic model to determine
when states deploy technologies before learning how to minimize their risks. When
competitors are moderately adversarial or the technology laggard is not very capable,
the laggard does not use a risky technology unless it catches up to the technology
leader. By contrast, if competitors are highly adversarial and the laggard is closer to
the leader’s capability level, the laggard is willing to cut corners to gamble for advan-
tage, so that the shared risk falls if the laggard catches up. Further, when competitors
are not deploying the riskiest technologies, steps to make those technologies safer will
be attenuated or reversed by risk compensation.

Preliminary. Please do not cite or distribute without permission.

We are grateful for outstanding research assistance by Ben Harack and Maximilian Negele

and for very helpful feedback from Eric Gartzke, Nadiya Kostyuk, and attendees of our

presentations at the Future of Humanity Institute, the Centre for the Governance of AI,

Dartmouth College, and the American Political Science Association 2021 Annual Meeting.



To make a discovery is not necessarily the same as to understand a discovery. -

Abraham Pais1

In the summer of 1942, a group of physicists held a series of secret meetings at the

University of California, Berkeley, over the development of the nuclear bomb. One of those

physicists, Edward Teller, realized that a reaction had the potential to ignite all the hydrogen

in the oceans or nitrogen in the atmosphere, destroying all complex life on Earth. Though

Teller’s calculations were later understood to be flawed, the physicists remained worried

about the potential for catastrophe up until the Trinity test was conducted in 1945.2 And

yet, they conducted the test. Part of the decision to implement the atomic bomb was due

to the US’s fear that Nazi Germany was developing their own bomb. What factors influence

decisions to implement risky technologies in competitive contexts?

Technological arms races often create pressure on governments to take risks that affect

not only their own citizens, but also their adversaries’ citizens and even those of neutral

countries. For example, criminal groups have stolen and used cyberweapons developed by

the US government: by creating these tools, the US inadvertently created new dangers to its

own citizens and to people around the world.3 During the Cold War, the US and the USSR

took risks that could have been catastrophic. Infectious pathogens escaped from Soviet

biological weapons labs several times.4 Humanity came perilously close to nuclear war on

numerous occasions when an American or Soviet early-warning system falsely reported that

the other side had launched a nuclear attack.5

Today, the United States, China, and other great powers are engaged in an increasingly

dangerous and destabilizing race to develop new technologies useful for geopolitical compe-

tition, particularly applications of artificial intelligence (AI) to areas from robotic weapons

to automated intelligence analysis.6 For example, both the US and Chinese governments

1Inward Bound: Of Matter and Forces in the Physical World, 1988
2Ord 2020, 90-93.
3Allen and Chan 2017, 26
4Allen and Chan 2017, 110
5Borrie 2019
6State Council of China 2017; National Counterintelligence and Security Center 2021; Schmidt et al. 2021.
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have implemented policies aimed to achieve a lead in access to the most advanced semi-

conductors, which are critical for developing AI applications. In 2022, the US passed the

“CHIPS and Science Act,” which subsidizes companies manufacturing semiconductors on

US soil and bars recipients from investing in new factories to produce the most advanced

semiconductors in China, Russia, or other “countries of concern.” The US also tightened

restrictions on the export of semiconductors to China, in an effort to prevent the Chinese

military from using them to develop new weapons systems. The Chinese state has been

investing heavily in domestic chip production and in 2022, a state-funded company started

manufacturing semiconductors that matched the most cutting-edge technology in the world.

What consequences will these competing policies have for global security?7

AI has vast potential to improve human welfare in areas such as medicine, education,

and many others.8 Even in the security realm, some emerging applications of AI could

improve safety by, for instance, helping to evacuate wounded soldiers or monitor compliance

with the laws of war.9 However, there is growing concern among scholars that some AI-

powered tools of statecraft could carry substantial global risks if they are deployed hastily,

before sufficient research and testing has identified safe ways to design and use them.10

Geist and Lohn (2018, 21) argue that “the riskiest periods will occur immediately after AI

enables a new capability, such as tracking and targeting or decision support about escalation.

During this break-in period, errors and misunderstandings are relatively likely. With time

and increased technological progress, those risks would be expected to diminish.” Intense

security competition can incentivize states to deploy new technologies before passing through

this perilous “break-in period.”

There is a longstanding literature documenting that externalities and competition lead

to greater risk-taking. Together, they can create a “race-to-the-bottom” dynamic, in which

actors rush to deploy risky technologies, knowing their competitors may reap the benefits of

7Zhong and Li 2022; McKinnon and Fitch 2022; Sanger 2022; Swanson 2022
8Bommasani et al. 2021
9von Braun et al. 2021, 7.

10Allen and Chan 2017; Farquhar et al. 2017; von Braun et al. 2021

2



deploying first if they do not.11 What has not been adequately studied are the conditions

under which these dynamics are more and less severe. In particular, in the context of

technology races between states, how do factors like the acuteness of safety-performance

tradeoffs or actors’ relative positions in the race lead them to take on more or less risk?

To answer these questions, we construct a model of a race between two states to deploy

a technology that poses a risk to both. We examine how three factors influence their will-

ingness to cut corners on safety in order to win the race: the relative technical knowledge

of the competitors; the severity of the safety-performance tradeoff; and the degree of enmity

between them.

In the model, two actors compete to develop and use a technology first. Players’ technical

knowledge increases over time probabilistically, so that the initially less knowledgeable player

may catch up to or overtake the leader. Each period, the players choose whether to build and

use the technology or wait until they understand it better. If they decide not to wait, they

can implement the most capable version of the technology possible given their knowledge

level, or a version that is less capable but which they understand better and is thus safer.

If a player implements a more capable version of the technology, it is more likely to win the

race, but also more likely to cause a disaster that harms both players. Thus, the players

weigh a tradeoff between performance and safety in making implementation decisions. This

tradeoff is a key feature of these strategic contexts.

We establish some counter-intuitive findings. First, we characterize how the safety-

performance tradeoff affects the probability of an adverse outcome that harms all players.

There are two competing effects. Conditional on the version of the technology a player

implements, the direct effect of improving the safety of that version is of course to reduce

11See for example: Kahler 1998, Berger 2000, Murphy et al. 2004, Cai and Treisman 2005, Prakash and
Potoski 2006. Similar strategic dynamics play out in other contexts, such as competition between technology
firms. A recent example comes from Meta, the company formerly known as Facebook, Inc. In order to
protect its declining market share, it knowingly employed algorithms on Facebook that promoted anger-
provoking content, potentially furthering societal polarization (see: Timberg, Craig, “New whistleblower
claims Facebook allowed hate, illegal activity to go unchecked” Washington Post, 22 October, 2021). The
decision to do so was a risk not only to the company itself, but also to the industry’s largely unregulated
status and perhaps to the effectiveness of democracy.
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the total risk. However, there is also a risk compensation effect: the safety improvement

increases incentives to implement recklessly. This leads to a counter-intuitive result: some-

times investments in safety can increase risk, by inducing actors to deploy more dangerous

versions of a technology than they would have otherwise.12 Yet, past a certain level of safety

of the technology, any further increases in safety decrease total risk. These monotonically

positive returns to safety improvements set in at lower levels of safety when enmity is higher.

This is because at low enmity, a larger increase in the safety of the technology at a given

performance level is required to incentivize an actor to implement at that performance level,

rather than at a lower performance level. Thus, safety insights decrease overall risk only

when the technology is already sufficiently safe, and the level at which a technology is al-

ready sufficiently safe decreases in enmity. Thus, when enmity is higher, safety insights are

more likely to reduce overall risk; when enmity is lower, safety insights must be more effective

before they reduce, rather than increase, overall risk.

Second, a close race can be either safer or more dangerous than a race in which one

player is behind, depending on the enmity between the players and the laggard’s capability.

In particular, if enmity is only moderate or the laggard is so far behind that it has little

opportunity to win even if it cuts corners, the shared risk is lower than if the laggard catches

up to the leader. However, when enmity is high enough and the laggard is sufficiently

capable, the laggard is willing to cut corners, increasing the risk of a shared disaster. In this

case, the risk of a bad outcome for both players decreases when the laggard catches up.

Thus, capable but frustrated laggards are dangerously motivated to take risks - and may

induce technology leaders to take greater risks in turn. As an analogy, consider runners near

the end of a race. Racers who are neck and neck, even if they are desperate to win, are

unlikely to cheat by cutting corners if cheating stands a sufficient chance of being caught.

Racers who are far behind are likely to accept that they cannot win and give up. But racers

12Note that this risk compensation effect is different from moral hazard. Risk compensation is caused by
decreasing the probability that a given action will cause harm (in this case, the probability that implementing
a particular version of the technology will cause a disaster), whereas moral hazard is created by shifting the
harm from a decision-maker to another party (Reynolds 2015).
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who are not quite so far behind know that they have a chance of winning, but only if they

cut corners.

Most of the parameters have effects on risk whose signs are conditional on the other

parameters; not so with enmity. Enmity is the reason to cut corners; when higher enmity

has an effect it is always to increase the risk of disaster.13 If the laggard does not view its

opponent’s victory as catastrophic, it is less likely to engage in risky development to catch

up. If the United States is developing a new weapon, it is unlikely that the UK would trade

off safety for speed in an attempt to catch up. On the other hand, an adversary such as

Russia that strongly prefers to develop the weapon before the US might be willing to trade

off more risk in order to win the race.

The model is related to, but distinct from, existing models in the technology and arms

race literatures. In contrast to most arms race models, the model below is a dynamic, infinite

horizon model with a state variable - players’ knowledge levels - that can grow over time.

In contrast to models in the technology and patent race literature, we study a situation in

which actors take joint risks and face a choice to implement a technology immediately or

to wait until they learn how to reduce its risks. Thus, one actor may have an incentive to

implement a risky technology before another has a chance, not just to win the race, but to

prevent the risky corner-cutting behavior of the other actor. No previous study analyzes a

race model that combines all of these features.

The next section characterizes our model relative to the existing literature. We then

present the model formally and discuss its implications, including how those interested in

maximizing general welfare can intervene depending on race characteristics. We also char-

acterize the ways in which the model generalizes to other cases through three extensions.

13Most theoretical paradigms in international relations conceive of enmity in a similar fashion to the way that
we understand it here. See Goertz and Diehl 1995 and Hensel, Goertz and Diehl 2000 for definitions.
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Racing Under Risk

Political leaders frequently face tradeoffs between increasing their state’s power over its rivals

and reducing global risks. Should they deploy a powerful new weapon as soon as possible or

hold off until they have learned more about how to use the technology safely? If they deploy

it, should they design and use it in the way that maximizes the likelihood of prevailing in a

crisis, or in a way that makes makes a shared catastrophe less likely but a stalemate more

likely?

For example, nuclear-armed adversaries face a shared risk of an accidental or unauthorized

launch triggering a nuclear war. Building nuclear bombs involves accepting this risk in return

for the ability to deter or compel rival nations.14 Moreover, there are tradeoffs between

military capability and mutual safety in how one deploys nuclear weapons. For instance,

President Eisenhower delegated authority to American commanders in Europe to use nuclear

weapons in the event of a Soviet invasion of NATO countries. This decision was meant to

ensure they could stop an invasion quickly, particularly if a communications breakdown

prevented them from communicating with the president. Yet Eisenhower was aware that

delegating control over nuclear weapons raised the risk that “something foolish down the

chain of command” could provoke an unintended nuclear war.15 Similar capability-safety

tradeoffs apply to decisions about whether to keep nuclear forces on high alert16 and whether

to use “permissive action links,” mechanisms that prevent the launch or detonation of a

nuclear warhead unless the operator enters a secret code they would only receive during a

crisis.17

14Even if a country’s adversaries do not possess nuclear weapons, acquiring nuclear weapons may tempt them
to do so as well, making an accidental nuclear exchange possible.

15See: Schlosser 2014. It appears that Eisenhower delegated nuclear authority solely to improve America’s
chances of winning a war with the Soviet Union, not to strengthen its ability to deter one, since as Schlosser
notes, Eisenhower chose to keep the decision secret.

16See Intriligator and Brito 1985; Kristensen and McKinzie 2012.
17Schlosser 2014. In some cases, optimizing the design and use of a weapon for maximum competitive advantage
over adversaries might also minimize shared risks along some dimensions. Even in such cases, there may still
be a tradeoff between competitive advantage and avoiding shared risk along other dimensions. In any case,
our claim is simply that significant tradeoffs between strategic advantage and shared safety are sufficiently
common to be worth studying.
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Great power competition over emerging technologies poses new global risks in the current

era. For example, states are competing for military and political advantage through various

applications of AI, in areas such as cyberwarfare, logistics, autonomous drones, analysis

of intelligence data, and spreading disinformation.18 As a shorthand, we will refer to all

applications of AI by states to increase their relative power as “AI weapons,” but as these

examples show, such applications extend far beyond narrowly-defined military technologies.

Across a number of disciplines, a growing community has begun to identify substantial

global risks from some forms of advanced AI.19 Efforts by a state to develop and use AI

weapons could end up harming both itself and its adversaries, as well as other states. These

types of unintended consequences could result from malfunctioning weapons, proliferation,

or systemic change in states’ incentives to initiate or escalate conflict.20

As an example of malfunctioning risk, an AI advisor system that analyzes intelligence

data to assess the military intentions of another state might mistakenly conclude that an

attack is imminent and recommend a preemptive strike, leading to a war that would otherwise

not have occurred.21 AI poses significant proliferation risks too. For example, other states,

terrorists, or criminals can steal AI cyberweapons, making all states more vulnerable.23

Finally, AI weapons could change strategic incentives in dangerous ways. For example,

a state with automated systems that could locate another country’s nuclear weapons or

18See: Ayoub and Payne 2016; Allen and Chan 2017; Thomas 2020; Schmidt et al. 2021.
19See for example: Farquhar et al. 2017. Some of the risks from AI and other emerging technologies may
even be existential. Bostrom 2002 is one of the first contemporary works to advocate for unifying the
study of existential risks. See Bostrom and Cirkovic 2011 and Ord 2020 for current reviews of natural and
anthropogenic existential risks.

20This categorization of AI risks is based on the broader typology proposed by Zwetsloot and Dafoe 2019, who
sort the unintended harms of AI into “accident,” “misuse,” and “structural” risks.

21See Geist and Lohn 2018 and Price, Walker and Wiley 2018. Price, Walker and Wiley (2018) note that
accidental “flash wars” would be even more likely to break out if both sides have automated systems for
strategic analysis, which could interact in unexpected ways, just as automated stock trading algorithms
have produced selling sprees dubbed “flash crashes.” While any technology can malfunction, the increasing
complexity of AI systems makes it particularly hard to predict how they will act in novel situations.22 This
risk is compounded by the speed and scale that automation allows: humans may not have time to stop an
AI before it inflicts substantial damage (Altmann and Sauer 2017; Danzig 2018; Price, Walker and Wiley
2018; Zwetsloot and Dafoe 2019; Rudner and Toner 2021).

23As Allen and Chan (2017) point out, stealing the design for a physical weapon does not immediately enable
the thieves to build that weapon if they lack the necessary materials or manufacturing capability. But if
they steal the computer code for a cyberweapon, they have stolen the weapon itself.
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command-and-control infrastructure might be able to preemptively destroy an adversary’s

ability to retaliate against a nuclear attack. In a crisis, the opposing state might choose to

launch its nuclear weapons while it still can.24

There may be significant first-mover advantages in deploying some kinds of AI. Because

AI lends itself to rapidly scaling up, breakthroughs in AI weapons technology may lead to

dramatic shifts in the balance of power.25 These potential strategic advantages could create

powerful incentives for states to field cutting-edge AI weapons before they fully understand

their risks.

Previous analyses of technology and arms races offer useful analogies in addressing these

questions, but these literatures do not capture essential features of risky technology races.

Most strategic arms race models do not include a state variable in spite of the centrality of the

growth in arms over time to the strategic context.26 Fearon 2011 studies a dynamic, two-actor

model with state variables representing accumulated arms, but arming is deterministic.27

The technological race model we analyze in this article also draws from the literature on

patent and innovation races.28 Our model shares the dynamic nature of these models and

the uncertainty in the arrival time of innovations (Budd, Harris and Vickers 1993; Bimpikis,

Ehsani and Mostagir 2019). Like existing innovation race models, there is a benefit to the

actor who reaches a threshold first and a cost to the actors who do not. This might be

thought of as a state achieving a long-term strategic advantage or a short-term advantage

that is sufficiently important to drive a technological arms race. Like Bimpikis, Ehsani

and Mostagir 2019, we describe how the research progress of opponents conditions players’

incentives to take risks. Like some others, we include a state variable that measures players’

level of progress in the race, finding that large gaps can discourage laggards (Scotchmer

24Moore Geist 2016; Horowitz 2019; Zwetsloot and Dafoe 2019.
25Horowitz 2018; Future of Life Institute 2021.
26Examples include: Axelrod 1984; Downs and Rocke 1990; Powell 1993; Jackson and Morelli 2008; Fearon
2018.

27Bas and Coe 2016 study a dynamic context in which one side attempts to master a technology while the
other side attempts to deter mastery, but is not racing itself.

28See Langinier and Moschini 2002 for a review of this literature.
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and Green 1990; Bimpikis, Ehsani and Mostagir 2019). Unlike this literature, however,

we allow actors to choose between waiting for research that allows safer implementation of

technologies and cutting corners to implement a risky technology now. We also differ from

the patent race literature in our welfare analysis and in how we conceive of the opportunities

for actors to mitigate joint risks. In much of the patent race literature, welfare loss comes

from the fact that laggards invest in R&D without winning the prize, leading to deadweight

loss (Denicolo 2000; Rockett 2010). In our model, by contrast, welfare loss to both players

is driven by the fact that one or both players can cut corners by deploying technologies that

pose shared risks.

A Model of Implementation Risk

The model is a stochastic game in which players compete for a decisive strategic (military or

political) advantage that comes with being the first to successfully implement a particular

technology. However, in attempting to implement this new technology, they run the risk of

causing a disaster that imposes costs on both. The players face a tradeoff between winning

the competition and avoiding a shared disaster. As the game goes on, players acquire new

technical knowledge that allows them to compete more effectively or more safely.

In each period, players choose whether to implement the technology and if so, which

version of the technology to implement. Implementation represents any effort by states to

design and build a form of the technology and attempt to use it to gain a strategic advantage.

For instance, a state might decide to design a new kind of fully autonomous swarming drone,

mass produce them, and threaten to use them in order to compel or deter a rival. Or a state

might seek to create a new cyberweapon and attack another power’s financial institutions to

reduce the rival’s relative power.

Implementation attempts can be successful or unsuccessful. As an example of an un-

successful implementation attempt, a state might attack its rival with a new weapon only
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to discover that it is ineffective in combat because of a design flaw or because the target

state has an effective defensive technology to counter it. Implementation may also fail for

non-technical reasons. A military’s strategy for integrating the weapon into its operations

may be ineffective or political leaders might underestimate their opponents’ resolve such

that the new weapon fails to deter them. If players implement the technology, they choose

among different versions of it: e.g. different technical designs or operational procedures for

deploying the technology. The versions vary in terms of their capability, which we define

as the likelihood that implementing that version will result in the implementer achieving the

strategic advantage, i.e. winning the competition.29

The state of the game in a given period is the two players’ levels of knowledge about

the technology and a player’s knowledge determines which versions of the technology it can

implement. At the beginning of each period, each player observes its own knowledge level

and and that of its opponent. In period t ∈ {1, 2, ..} each player i ∈ {1, 2} has knowledge

level Ki,t ∈ {1, 2, 3}. The greater a player’s knowledge, the greater the maximum capability

of the versions of the technology they can implement. (For example, over time the US and

the Soviet Union learned how to build increasingly powerful nuclear warheads.) At the end

of each period, as long as they have not reached the highest knowledge level (Ki,t = 3), each

player has an independent probability α ∈ (0, 1) of advancing to the next level of knowledge.

After observing their knowledge levels, the players simultaneously choose which versions

of the technology to implement, if any. Specifically, each player chooses a capability level

Ci,t ∈ {0, ..., Ki,t}, where higher values of Ci,t correspond to more capable versions of the

technology and Ci,t = 0 represents not implementing any version.

There are three mutually-exclusive possible outcomes in each period. The first possibility

is that one of the players succeeds in implementing the technology and wins the competition

for the strategic advantage, ending the game. The second possibility is that one of the players

29The exact probability that a player achieves the strategic advantage depends on the other player’s implemen-
tation choice in that period, as we describe below. However, holing the opponent’s action fixed, implementing
a more capable version of the technology always increases a player’s chance of winning in that period.
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causes a disaster, which also ends the game. Disasters represent unintended outcomes that

are catastrophic for both rival powers, such as an unintended nuclear war or a weapon of

mass destruction falling into the hands of a terrorist group. The final possibility is that

neither player successfully implements or causes a disaster and the game continues to the

next period. We call this possibility a status quo outcome and it can occur either because

neither play tried to implement the technology or because implementation was unsuccessful.

If a player reaches the highest knowledge level (Ki,t = 3), it has fully mastered the

technology in the sense that it cannot cause a disaster or experience a failed implementation.

We discuss this case in further detail below. Otherwise, if a player is still at knowledge level

Ki,t = 1 or 2, it faces a safety-performance tradeoff. Implementing a more capable version of

the technology decreases the player’s chance of losing the competition for strategic advantage

but increases the chances that the player will cause a disaster.

Specifically, the probability that a player causes a disaster is decreasing in the gap between

its knowledge level and the capability level at which it implements. This assumption reflects

both the safety-performance tradeoff at any particular point in time and the tendency over

time for states to gain insights into how to manage the risks of the technology. For a given

level of capability, states learn how to deploy increasingly safer versions of the technology.

Conversely, for any given level of risk, states will be able to deploy increasingly more capable

versions. The most capable version of a technology available to a state at a given time will

often be the most cutting-edge one; for these versions, states have had less time to conduct

tests, assess risks, and devise mechanisms and operating procedures to improve safety.

Formally, if Ki,t = K < 3 and Ci,t = C > 0, the probability of the implementation

causing a disaster is given by a function δK−C , where 0 < δ1 < δ0 < 1. We refer to δ0 and

δ1 as the full implementation risk and the partial implementation risk, respectively.

The probability that a player does not implement successfully but does not cause a disaster

is decreasing in the level of implementation, and is given by the function σC , where 0 < σ2 <

11



σ1 < σ0 = 1.30

The outcome at the end of each period also depends on the relative capability levels at

which players try to implement. If Player i implements at a higher capability level than

Player j (Ci,t > Cj,t), the higher-implementing player has the first shot to win or cause a

disaster. If that player implements unsuccessfully but does not cause a disaster, the lower-

implementing player then has a chance to win or cause a disaster.31 If both players implement

at the same level, then each has a 50% chance of getting the “first shot” to win or cause a

disaster.32

Once a player has reached the highest knowledge level, it cannot cause a disaster or

experience a failed implementation. Conditional on getting a “shot” at winning, if Player i

has knowledge Ki,t = 3 and chooses to implement at a non-zero capability level (Ci,t ≥ 1),

then it wins the competition with probability 1.33

We make some additional assumptions to focus on interesting cases. First, we restrict

the parameter values in ways that ensure that a player’s chance of winning in any given

period is weakly increasing in the capability level at which they try to implement. Namely,

we assume that σ1 + δ0 < 1 and σ1 − σ2 > δ0 − δ1. Furthermore, when neither player is at

30Although we model how knowledge about the technology affects capabilities and risk, similar dynamics likely
apply to many other factors that influence the combinations of performance and safety a state can achieve
when deploying a technology. For instance, a state’s abilities in AI domains depend on their access not only
to cutting-edge algorithms, but also to well-trained and experienced engineers, powerful computer hardware,
and large training datasets (Ding 2018). Economic, political, and other social factors will also influence the
extent to which AI capabilities translate into strategic advantage.

31As noted, the players move simultaneously. The higher-implementing player gets the “first shot” at ending
the game only in the sense that, by winning the competition, the player who deploys a more powerful
technology preempts the possibility of a disaster by the other player. Relaxing this assumption, so that
implementing at a higher capability does not reduce the chance that the other player causes a disaster in
that period, should not qualitatively change our results. Winning would still eliminate the possibility of the
other player causing a disaster in a future period, so a similar incentive to preempt a disaster by the other
player by implementing at a high capability would remain.

32We define a variable Dt, such that Dt = 1 if either player causes a disaster in period t and Dt = 0 if neither
player causes a disaster in period t.

33As in the cases in which Ki,t < 3, Player i gets the first shot at winning with probability 1 if it implements
at a higher level than Player j (Ci,t > Cj,t) and with probability 0.5 if they implement at the same non-zero
level. If Player j gets the first shot, Player i will win if and only if Player j implements unsuccessfully (but
doesn’t cause a disaster) and Player i has chosen a non-zero implementation level. If Player i does not try to
implement (Ci,t = 0), it cannot win in that turn, and the game continues if Player j also does not implement
or implements unsuccessfully.
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the highest knowledge level, these restrictions imply that the chance of winning is strictly

increasing in the capability level at which a player implements.34

The payoffs are as follows. At the end of the game, if a disaster occurs, each player gets a

payoff of -1. If there is no disaster, the winning player gets a payoff of 0 and the losing player

gets a payoff of −e, where 0 < e < 1. We refer to e as the enmity between the players. The

assumption that e < 1 is an important scope condition for our analysis: we are focused on

situations in which the shared disaster is worse for each player than losing the competition for

strategic advantage. For example, the leaders of two rival states might both prefer a world in

which the other is a global hegemon to a world in which both countries have been annihilated

in a nuclear war. If neither player ever causes a disaster or successfully implements (such

that the game continues forever), each gets a payoff of −q, where 0 < q < e.35

Results

When is a technology race of this sort most dangerous? What factors determine the likelihood

that a race will eventually end with one of the players causing a disaster, which we call the

overall disaster risk? In this section we present two counter-intuitive insights that emerge

from the model about what makes a race dangerous. (1) Improvements in the safety of a

technology can make a race riskier overall. (2) A race can be safer when it is neck-and-neck,

compared to when one player is more technologically advanced than the other. In each of

the following two subsections, we discuss one of these findings and the factors that determine

when the finding does and does not hold.

In the first subsection, we show that marginal safety improvements can sometimes be self-

defeating because of risk compensation. Reducing the probability that an actor will cause

a disaster if they implement the most powerful technology they are capable of can induce

34If Player i is at the highest knowledge level, its chance of winning is 1 if it implements at any capability level
such that Ci,t > Cj,t.

35The game can only continue forever if neither player ever tries to implement after reaching the highest
knowledge level.
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them to implement it when they would otherwise have implemented a less capable but safer

version. Moreover, one player’s decision to implement at a higher level creates pressure on

the other to take greater risks as well. Thus, improvements to safety can actually increase

the overall probability that a disaster eventually occurs.

The second subsection explores when a close race is safer or more dangerous than one

with a clear leader. We find that, in a wide array of circumstances, a racer will behave more

recklessly when they are less technologically advanced than their rival, and exercise greater

caution if they catch up. Thus, when there is a leader and a laggard, the overall disaster

risk can be higher than when the race is neck-and-neck. In particular, a close race tends to

be safer than a race with a leader and a laggard when enmity between the players is high

and when even the less-advanced technology available to the laggard is relatively effective.

We analyze the set of symmetric pure-strategy Markov-perfect equilibria. By focusing

on Markov-perfect equilibria, we can investigate interventions that involve altering material

factors: the costs and benefits competitors face in different outcomes and the likelihood of

the outcomes conditional on the competitors’ choices.36

In all Nash equilibria, as soon as one or both players reach the highest knowledge level

(Ki,t = 3), the game will end in victory for one of them with certainty.37 So players’ expected

payoffs and best responses in all states of the game in which neither has reached the highest

knowledge level (max{K1,t, K2,t} < 3) cannot depend on which of the subgame equilibria

they play in any subgame in which one or both players have reached the highest knowledge

level (max{K1,t, K2,t} = 3). We therefore assume, without affecting any of our results, that

36The restriction to Markovian strategies is fairly standard in the arms race literature. See for example:
Jackson and Morelli (2008) and Fearon (2011). Considering asymmetric, mixed-strategy, and non-Markov
equilibria in technology race models would be a valuable direction for future research.

37When exactly one player has knowledge Ki,t = 3, there is no Nash equilibrium in which the leading player
implements at a capability level less than or equal to that played by the lagging player. Doing so would
yield a payoff of −e, −0.5e, or −q, whereas the leader can guarantee victory and a payoff of 0 by choosing
Ci,t = 3. If both players are at the highest knowledge level (K1,t = K2,t = 3), the only Nash equilibrium is
for both to implement fully (C1,t = C2,t = 3). In any strategy profile in which both players implemented
below capability level 3, either player could profitably deviate to Ci,t = 3, guaranteeing a win and the highest
payoff, rather than a payoff −e, −0.5e, or −q. In any strategy profile in which one player implemented at
Cj,t = 3 and the other player implemented Ci,t < 3, the latter could profitably deviate to Ci,t = 3 and have
an expected payoff of −0.5e rather than −e.
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both players always implement fully (Ci,t = Ki,t) once either of them reaches the highest

knowledge level (max{K1,t, K2,t} = 3).38

We denote a player’s equilibrium implementation level in any given period as a function

of their position in the race: C⋆(x, y). When a player (i) has knowledge Ki,t = x ∈ {1, 2, 3},

and the other player (j) has knowledge Kj,t = y ∈ {1, 2, 3}, player i chooses implementation

level C⋆(x, y) ∈ {0, ..., x}. Since we assume that C⋆(3, y) = 3 ∀ y ∈ {1, 2, 3} and C⋆(x, 3) =

x ∀ x ∈ {1, 2}, we will differentiate between strategies simply in terms of what a player does in

states of the race when neither player has reached knowledge level 3. We denote strategies as:

C⋆ = (a, b, c), representing the implementation levels a player chooses when it is leading,

lagging, or tied, respectively. a ∈ {0, 1, 2} is the level of implementation players choose

when they are ahead with knowledge level 2 while the other player is at knowledge level 1:

C⋆(2, 1) = a. b ∈ {0, 1} is the implementation level they choose when they are behind at

knowledge level 1 while the other player is at knowledge level 2: C⋆(1, 2) = b. c ∈ {0, 1, 2}

is the implementation level they choose if the initial laggard has caught up to the leader at

knowledge level 2: C⋆(2, 2) = c. Because we restrict our analysis to symmetric equilibria,

we will also use this notation to represent equilibria. We denote the overall disaster risk as

PD
x,y(C

⋆), because it is conditional on the equilibrium and on the current state of the race.39

The model sometimes has multiple symmetric pure-strategy Markov-perfect equilibria.

We focus our analysis on the equilibrium with the lowest probability that a disaster occurs

before the race ends, given players’ initial knowledge levels. We refer to this probability as

the minimum overall disaster risk, denoted P̂D
x,y.

40

38For all parameter values consistent with our assumptions, this subgame-perfect equilibrium exists in all
subgames that begin with one or both players at the highest knowledge level. For a who player starts at
knowledge level 3, it is a weakly dominant strategy for that player to always choose Ci,t = 3. If only one
player is at knowledge level 3 (Ki,t = 3, Kj,t ∈ {1, 2}) and the leader implements at capability level 3
(Ci,t = 3), the lagging player gets a payoff of −e no matter what action it chooses, so it does not have a
profitable deviation from full implementation.

39The overall disaster risk is not to be confused with the probability of a disaster occurring on a single
implementation attempt at a level C by a player with a knowledge level K. The latter probability is simply
δK−C , whereas P

D
x,y(C

⋆) = Prob{∃ T ≥ t : DT = 1|C⋆,Ki,t = x,Kj,t = y}, where T is the period in which
the game ends. (Note that T is a random variable in {t, t+ 1, ...}.)

40Let M denote the set of symmetric pure-strategy Markov-perfect equilibria: P̂D
x,y = min

C⋆∈M
PD
x,y(C

⋆).
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Of course there may be some empirical technological arms races in which actors fail to

coordinate on feasible lower-risk strategies.41 Nonetheless, by focusing on the minimum-

risk equilibria, we are able to understand the counter-intuitive dynamics of risk in best-case

scenarios.

Improving safety can increase risk.

It might seem that improving the safety of a technology is always a good thing. But the

model shows that in fact safety improvements can sometimes be counterproductive. Making

the most powerful version of a technology safer can incentivize rivals in a race to use it,

when they would otherwise exercise caution by deploying a less capable version that they

understood better. On balance, improving the safety of racers’ most powerful technologies

can therefore increase the overall disaster risk.

Figures 1 and 2 illustrate this point. We focus in these charts on the case where the

players start in what we call the “gap state,” when one player leads with knowledge Ki,1 = 2

and the other player lags behind at Kj,1 = 1. In each chart, the horizontal axis is the

probability of causing a disaster (δ0) each time a player implements “fully”, deploying the

most powerful version of the technology it can, given its current knowledge.42 Recall that in

the model the risk of a disaster is solely a function of the gap between a player’s knowledge

and the level at which it implements, as long as it has not reached the highest knowledge level.

So reducing the full implementation risk means reducing the risk of implementing at level 2

(Ci,t = 2) for a player with knowledge 2 (Ki,t = 2) and reducing the risk of implementing at

level 1 (Ci,t = 1)for a player with knowledge 1 (Ki,t = 1). The vertical axis in each chart is

the minimum overall disaster risk, conditional on the race being in the gap state (P̂D
2,1). In

41In numerical computations, we find that the largest differences between the minimum and maximum disaster
risks occur when the incentives to trade off safety for performance are in a middle range: in these cases players
are willing to refrain from riskier levels of implementation, if and only if they expect the other player to do
so.

42Full implementation risk is bounded below at δ1, the probability of causing a disaster when a player im-
plements one level below their maximum capability level, which we hold fixed at 0.05 in both charts. It is
bounded from above by the assumption that σ1 − σ2 > δ0 − δ1. We set σ1 = 0.5 and σ2 = 0.05, so δ0 must
be less than 0.5. (This range also fulfills the assumption that δ0 + σ1 < 1.) We also hold fixed α = 0.25.
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Figure 1: Minimum overall disaster risk at gap state versus full implementation risk (low
enmity)

Figure 2: Minimum overall disaster risk at gap state versus full implementation risk (high
enmity)
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Figure 1, we hold enmity (e) fixed at 0.3, while in Figure 2 we hold enmity at 0.6. Each line

segment corresponds to a different equilibrium: the one with the lowest overall disaster risk

among all equilibria that exist at a given level of full implementation risk. The equilibria

are described in terms of the implementation levels chosen when a player is in the lead (at

knowledge level 2), lagging behind (at knowledge level 1), or tied (at knowledge level 2).

The minimum overall disaster risk is lowest when full implementation risk is either very

low or very high. This non-monotonicity is driven by the two countervailing effects of full

implementation risk on overall disaster risk. The first-order effect of increasing full imple-

mentation risk is to increase overall risk: holding the players’ strategies constant, if players

implement fully at some point in the race, the race is more likely to end in disaster as the

probability of causing a disaster each time they implement fully goes up. The second-order

effect of increasing full implementation risk, however, is to reduce the overall disaster risk:

if players just slightly prefer to implement fully at some point in the race, making full im-

plementation a little bit riskier can induce them to switch to implementing partially or not

implementing at all. The first-order effect thus occurs within a given equilibrium. The

second-order effect occurs across equilibria: when full implementation risk increases, a strat-

egy profile with lower implementation levels that was not previously an equilibrium now is

an equilibrium and becomes the new equilibrium with minimal overall risk.

The slope of each line reflects the first-order effect. The leftmost line of each graph shows

the overall disaster risk when players implement fully whether they are in the lead, lagging

behind, or tied. In this equilibrium, increasing full implementation risk raises overall disaster

risk because the probability of a disaster every time any player implements is higher. The

middle line in each graph shows the overall disaster risk when players only implement fully

if they are tied. In this situation, overall disaster risk again increases in full implementation

risk, because increases in the latter raise the chance that the race will end in a disaster if the

laggard catches up. But the slope of this line is less steep, because full implementation risk

does not affect the chance of the players causing a disaster while one player is still behind.
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The rightmost line in each chart is flat: when full implementation risk is high enough, players

do not implement fully at any point in the race, so further increases in full implementation

risk have no effect on the overall disaster risk.

The discontinuous shifts from one line segment to another show the second-order effect

at work. Consider the first chart, where enmity is relatively low. In this example, if full

implementation risk is less than about 17%, the only equilibrium that exists is the one in

which players always implement fully. However, when full implementation risk is between

about 17% and 20%, an equilibrium exists in which the laggard does not implement because

doing so would be too risky. Thus the minimum overall risk falls as full implementation

risk increases past 17%. When full implementation is higher than about 20%, an even

safer equilibrium exists, in which the leader also does not implement and players implement

partially if they reach the what we call the “tie state,” in which the initial laggard has caught

up to the initial leader at knowledge level 2 (K1,t = K2,t = 2).43 The dynamics are similar

in Figure 2, in which enmity is higher.44

This effect also occurs when the players are tied. We summarize this non-monotonic re-

lationship between full implementation risk and the minimum overall failure risk conditional

on reaching the tie state in Proposition 1:

Proposition 1 If low-tech performance (σ1) is in an intermediate range and partial imple-

mentation risk (δ1) is low enough, then there is some threshold δ⋆0 and constant π ∈ (0, 1)

such that:45

43It may seem odd that the leader switches from partial implementation to non-implementation when full
implementation risk increases, since the partial implementation risk has not changed. The shift in the
leader’s behavior in the gap state is driven by the shift in its expectation of what will happen if the laggard
catches up. By choosing not to implement in the gap state, the leader raises the odds that it will reach the
highest knowledge level before a disaster occurs, but it also raises the odds that the laggard will catch up
before the race ends. If the leader anticipates that the players will implement only partially if they reach the
tie state, the prospect of the laggard catching up is less costly for the leader in expectation, so the leader is
willing to hold off on implementing.

44The only difference is that the leader continues to implement partially even as full implementation risk
approaches its maximum, despite anticipating that the players will implement partially rather than fully if
they reach the tie state.

45More formally, there exist thresholds 0 < σ⋆
1 < σ⋆⋆

1 < 1 and 0 < δ⋆1 < δ⋆0 < δ0 such that δ1 < δ⋆1 and

σ⋆
1 < σ1 < σ⋆⋆

1 are sufficient conditions for the following conclusions.
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∀ δ0 ∈ (δ1, δ
⋆
0 ) : P̂D

2,2 is strictly increasing in δ0 (1)

∀ δ0 ∈ [δ⋆0 , δ0) : P̂
D
2,2 = π < lim

δ0↑δ⋆0
P̂D
2,2 (2)

We prove Proposition 1 in Appendix A of the online supplemental materials. Numerical

computation over a wide range of parameters indicates the result also holds conditional on

the race being in the gap state (i.e. for P̂D
2,1).

Intuition might suggest that policy interventions to improve the safety of a technology

are most needed when it is very risky for competitors to implement their most powerful

technology. However, in this model, reductions in full implementation risk only unambigu-

ously reduce overall risk when full implementation risk is already so low that the players will

implement fully at every stage in the race.

Comparing Figures 1 and 2 reveals another finding from this model that is quite robust:

reducing enmity is always a good idea in the sense that minimum overall disaster risk is

weakly increasing in enmity. At higher levels of enmity, the peak overall risk rises and shifts

to the right. Since losing is costlier, full implementation risk has to be even higher for players

to be willing to implement partially or not at all. This has the implication that, the lower

enmity is, the less likely it is that reducing full implementation risk will reduce overall risk.

A close race is safer than one with a frustrated but capable laggard.

Intuition might suggest that rivals are most willing to cut corners when they are neck-and-

neck. In fact, however, desperate laggards can be quite dangerous: if they try to implement,

their limited knowledge makes doing so inherently risky. If they catch up, they might be more

cautious, because they can achieve the same level of performance more safely. The overall

disaster risk can therefore be higher when one player is behind, if (1) the cost of losing is

high and (2) the laggard has a decent shot at winning by implementing its less-advanced
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technology immediately.

Thus, under certain conditions that we detail below, the minimum overall disaster risk

in the tie state is lower than in the gap state if and only if enmity and the probability of

successful implementation with level 1 technology are both high enough. We refer to the

latter as “low-tech performance,”46 defined as 1− σ1.
47 In equilibrium, laggards implement.

If players are tied, they also implement the less-capable technology, but doing so carries a

reduced risk (δ1 rather than δ0). Thus, the overall risk falls if the laggard catches up to the

leader’s knowledge level.48

Conversely, if enmity or low-tech performance is low, the laggard prefers not to implement

unless and until it catches up to the leader, at which point both players implement partially.

The leader in the gap state implements partially or not at all. Either way, the overall disaster

risk rises if the laggard catches up.

Figure 3 illustrates this finding. On the horizontal axis is the level of low-tech performance

and on the vertical axis is the level of enmity.49 At the lowest levels of enmity there exists an

equilibrium in which players do not implement until they reach the highest knowledge level,

so both the tie risk and the gap risk are zero. For values of enmity in an intermediate range

or for high values of enmity but low values of low-tech performance there are equilibria in

which the laggard does not implement and the gap risk is lower than the tie risk.50 At the

highest levels of enmity and low-tech performance the laggard implements in all equilibria,

and the tie risk is lower than the gap risk.51

46We do not mean to imply that a player with knowledge Ki,t = 2 who chooses Ci,t = 1 implements the
same version of the technology as a player with knowledge Ki,t = 1. Rather, a player in the first scenario
should be thought of as implementing a more sophisticated technology that achieves the same capability as
a laggard’s most powerful technology, but with a greater level of safety.

471 − σ1 is the probability that a player either wins or causes a disaster when it implements at level 1.
However, in this section we consider the effect of σ1 while holding δ0 and δ1 fixed, so variation in σ1 only
reflects variation in capability.

48Our simplifying assumption that knowledge levels are discrete limits us to comparing a gap to a tie. We are
not suggesting that an exact tie between competitors in a race would be required to induce restraint, simply
that they may become more cautious as the gap shrinks.

49The other parameters are set to: δ0 = 0.11, δ1 = 0.01, σ2 = 0.75, and α = 0.01.
50In all equilibria in this region, both players implement partially in the tie state, while the leading player in
the gap state implements partially or not at all.

51In these equilibria, players implement partially when tied, while a leading player implements partially or
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Figure 3: State of race with minimum overall disaster risk: gap (2,1) or tie (2,2)

Enmity and low-tech performance are substitutable in the laggard’s expected payoffs:

the higher the level of enmity, the lower the minimum level of low-tech performance at

which the laggard prefers to implement and vice versa. This substitutability is reflected in

the downward-sloping curve between the middle and upper regions. However, both enmity

and low-tech performance must be above certain thresholds for the laggard to prefer to

implement. If enmity is too low, the laggard will not implement no matter how high low-

tech performance is, and if low-tech performance is too low, the laggard will not implement

no matter how high enmity is.

For these equilibria to exist in their respective regions of the enmity/low-tech performance

space, full implementation risk must be low enough that the laggard will implement for some

sufficiently high enmity and low-tech performance. At the same time, full implementation

risk must be high enough, and partial implementation risk low enough, that players will

fully.
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implement partially (rather than fully) when tied, even at the highest level of enmity and

the lowest level of low-tech performance. Based on this reasoning, Proposition 2 lays out

sufficient conditions for the pattern that a tie is safer than a gap if and only if enmity and

low-tech performance are high:

Proposition 2 For low enough partial implementation risk (δ1), intermediate full imple-

mentation risk (δ0), and a rate of technological progress (α) that is either sufficiently low

or sufficiently high, the minimum overall disaster risk in the tie state is less than the mini-

mum overall disaster risk in the gap state if and only if enmity (e) and low-tech performance

(1− σ1) are sufficiently high. Specifically, for some threshold τ ∈ (2δ1, 1− σ2 − δ0 + δ1):

1. If e(1− σ1) > τ , then P̂D
2,1 > P̂D

2,2 > 0 (gap riskier).

2. If e(1− σ1) ∈ (2δ1, τ ], then P̂D
2,2 > P̂D

2,1 > 0 (tie riskier).

3. If e(1− σ1) ≤ 2δ1, then P̂D
2,1 = P̂D

2,2 = 0 (no risk).52

The conditions in Proposition 2 are sufficient but not necessary for the more general result

that the tie state is safer than the gap state when enmity and low-tech performance are near

their maximum values. In section 2 of supplemental Appendix C, we prove Proposition 3,

which demonstrates that this finding also holds when partial implementation risk is high

enough. In such cases, players do not implement at all in the tie state, so either the tie

risk is lower than the gap risk — when enmity and low-tech performance are high — or the

overall disaster risk is zero in both states.53

For a wide range of other parameter values, numerical calculations indicate that the tie

risk is weakly lower than the gap risk for high enough enmity and low-tech performance.

In particular, this result appears to hold as long as the difference between full and partial

implementation risk is not too high and high-tech performance is not too low.54

52See the proof of Proposition 2 in supplemental Appendix B. We also found that enmity and low-tech perfor-
mance must both exceed certain thresholds. We present and prove this corollary in section1 of supplemental
Appendix C.

53When partial and full implementation risk are both high enough, players do not implement in either state,
no matter how high enmity or low-tech performance.

54There is an interesting special case in which the result holds for a very different reason than under the
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Extensions

The model above provides baseline results for the analysis of technology races with joint

risks. In this section, we consider a variety of extensions.

Private Risks

We have described joint risks that states face in a variety of technology races. However, in

many cases, when things go wrong, it is primarily the state that deployed the technology

that is harmed.55 The strategic dynamics that result are similar to the case of joint risks

with one important difference: preempting other players from taking risky actions is not

a reason for players to take riskier actions themselves. In spite of this difference, the key

features of the strategic context remain: a safety-performance trade-off and a reward for

whoever successfully deploys, which can motivate the racers to take greater risks than either

would in the absence of competition.56 For these reasons, we again find that Propositions 1

and 2 hold.57

Non-Existence of a Safe Knowledge Level

We assume in the baseline model that the third knowledge level is perfectly effective and

safe. This assumption strengthens players’ incentive to hold off on implementing until they

reach the highest knowledge level. In this extension, we treat the third knowledge level in

the same way that we do the others. That is, implementing at the limit of one’s capability

conditions in Proposition 2. When full and partial implementation risk are both low, the tie is safer than the
gap if and only if enmity and low-tech performance are high enough, even though players implement fully
at all points in the race. In section 3 of Appendix C, we formalize and prove this result as Proposition 4. If
the laggard catches up, the probability that someone reaches the (risk-free) highest knowledge level or ends
the race by winning before a disaster occurs rises.

55For example, as the US military shifted rapidly from biplanes to jets during World War II, aviation accidents
on American soil resulted in over 15,000 deaths (Danzig 2018).

56Even when there is no negative externality from a disaster, the externality the winner imposes on the loser
(as captured by enmity) can drive a race to the bottom in which players take risks that leave them both
worse off than if they could commit to implementing more cautiously.

57Appendix D of the supplemental materials provides a formal definition of the private risk version of the
model and numerical examples of the results.
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when a player is at the highest knowledge level is no safer than implementing fully at other

knowledge levels, though it is more likely to result in a successful implementation of the

technology.58 Overall, we find that the results are largely similar. When one or both players

is at knowledge level 3, we continue to find that overall disaster risk first rises and then

falls in full implementation risk. Under conditions similar to those discussed for the baseline

model, a race with a large gap is more dangerous than both a small gap and a tie when

enmity and low-tech performance are high, and a large gap is safest when enmity and/or

low-tech performance is low.

Larger Numbers of Racers

Propositions 1 and 2 also hold when this model is extended to more than two players.

Moreover, versions of the model with three or more players allow us to compare different

types of gaps with varying numbers of leaders. Paralleling the results from the two-player

model, the gap state with one leader and two laggards (2,1,1) is safest when enmity or low-

tech performance are relatively low, while a tie (2,2,2) is safest when enmity and low-tech

performance are both high. For intermediate values of enmity and low-tech performance,

the gap state with two leaders and one laggard (2,2,1) can be safer than either a tie or a gap

state with just one leader.59

Discussion

Overall, the extensions provide reason to expect that the results of the baseline model are

fairly robust. In particular, sometimes the shared risks of a technology race are higher when

the competitors are closer together and sometimes they are higher when one competitor has

a significant technological lead. One key factor that influences this is the level of enmity

between the racers. When it is high, laggards cut corners on safety when they have the

58This extension is analyzed in detail in supplemental Appendix E.
59We illustrate these findings with numerical examples from the three-player model in Appendix F of the
supplemental materials.
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capability to do so. That is, they attempt to implement at the limit of their capabilities

when they have little other chance of winning the race because they are far behind; if they

were not so far behind, they would employ a less risky strategy. Thus, when distrust between

great powers becomes more severe, we should expect laggards to run more substantial risks.

When risks are joint, leaders will sometimes employ a riskier strategy as well in order to end

the race before a disaster occurs.60

While we highlight these risks of unequal competition, it is also worth recalling that it is

competition that produces risk in the first place. That means that when a laggard is so far

behind that they have little chance of successfully deploying a particular technology even if

they cut corners on safety, the overall risk is often at its lowest level. As a frustrated but

incapable laggard starts to catch up, it will begin to act more recklessly.

A crucial set of assumptions in the model concern how the race ends. In any period, both

a laggard and a leader have some chance to cross the finish line of successfully implementing

the new technology. Importantly, the probability that one actor ends the race is not impacted

by the relative position of the other actor. Thus, the race can end decisively when the players

are neck and neck; a player can even when it is behind its rival technologically. We might

also consider races that end endogenously when one side is far enough ahead of the other -

in other words, when the laggard gives up. Such a race would be quite different from the one

analyzed here, and likely more similar to the perpetual race analyzed in Hörner 2004. We

expect in such a race that effort and corner cutting would be highest around this transition

from a competitive to a non-competitive race because the marginal value of those actions is

likely to be highest then. This is a useful avenue for future work.

This discussion highlights the role that endogenizing effort, and with it the speed of

research progress, might play. Our model includes a fixed rate of progress and no costs of

effort in order to focus on implementation decisions. Including effort in the model would

60The incentives for both players to implement sooner rather than later in the case of a “frustrated laggard”
parallel the incentives for preventive attacks in deterrence theory and the spiral model, which reflect com-
mitment problems, anticipated shifts in relative power, and the efficacy of available weapons technologies
(Reiter 2003).

26



open up the possibility of a “costly peace” dynamic in the following sense (Powell 1993,

Fearon 2012, Coe 2015). If the effort required to compete became large enough, a state

might try to end the race through implementing despite the risks. Whether this dynamic

is plausible likely depends on two sets of factors. One is whether large shares of states’

resources can be used efficiently to improve their positions in the race. Some great powers

might find it difficult to reallocate substantial societal resources to a research race.

Another factor is whether actors have palatable alternatives to engaging in the research

competition. This relates to what we have called “enmity,” but which is equally a measure

of the degree of desperation that actors have to win the race. In most cases, rather than

incurring unsustainably high costs in pursuit of a particular technology, we expect states

to prefer investing in other technologies or alternative sources of strategic advantage. Of

course, some states may be willing to invest heavily in a research race when a new weapons

technology is seen as essential to security, although it is difficult to identify a single historical

case where unsustainably high costs of competition resulted from investments in research.

More commonly, the costs of arms production and the maintenance of standing armies have

been seen as taxing on societies, as in the cases of the transitions to metal clad warships in the

19th century or nuclear weapons in the 20th. On the whole, therefore, we expect it to be the

rare case that costly peace dynamics that result from effort levels have a significant influence

on the overall level of risk in research competitions. The infungibility of societal resources

means it is usually not effective to approach unsustainably high costs of research competition.

Nevertheless, for potentially important exceptional cases, this represents another avenue for

future research.

Do our results imply that middle powers should try to widen or narrow technological

gaps between great powers by aiding one and/or hindering its rival? Suppose, for example,

animosity between the US and China grows but one has a lead in some autonomous weapons

technology, so that the laggard is willing to gamble on deploying its most advanced weapon

before figuring out how to reduce its risks. The model suggests that the world might be
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safer if other countries got involved, whether to help the laggard catch up (so the former

laggard could compete without being reckless) or help the leader get even further ahead (so

the laggard would give up competing at all).

Nonetheless, we caution against an overly general interpretation of these results. Trying

to shrink, maintain, or increase the gap between competing great powers may not be a first-

best option even from the perspective of third parties. It may be more effective to try to

reduce enmity between rivals by creating institutions that facilitate trust or to use some

combination of carrots and sticks to dissuade both sides from trying to deploy a particularly

risky technology. In our view, the implication of the analysis is rather to identify dangerous

moments in technology races and to suggest that the full range of policy options be considered

in those cases.

Related to these questions about the desirability of close versus unequal races are the

effects of what may be an ever more open world as offensive cyber capabilities outpace

defensive capabilities.61 If secrets become a thing of the past, at least between great powers,

this will have a range of implications for technology races and technology implementation.

When openness results in two actors with high enmity being at the same knowledge level,

they can be expected to take on less risk than they would if one was further behind. Yet,

openness will also heighten competitive dynamics by allowing incapable laggards to become

capable, potentially increasing risk dramatically. We suspect that adding additional actors to

a race will also increase risk in such a context. Where two neck-and-neck powers may refrain

from dangerous implementation because each can hope to win the race to a technology that

is both safe and effective, this prospect dims with more competitors. If openness becomes

the expectation, this could also have other dangerous effects. Actors with a temporary

advantage will have incentive to exploit it by taking greater risks in the short term. All of

these dynamics merit further study.

61Saltzman 2013 argues that cyber capabilities are offense-biased, while Slayton 2017 argues that they are
defense-biased. Garfinkel and Dafoe 2019 reconcile these theories by developing a model with an inverse-U
relationship between investment in cyber technology and the offense-defense balance.
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The model also provides considerations for scientists and engineers about when to pursue

research aimed at improving the safety of the most powerful weapons technologies, as well as

when to share the results of such research with rival powers. Marginal improvements in the

safety of the riskiest weapons technologies can be counterproductive if they encourage states

to deploy them when they would not have otherwise. For example, major military powers

have refrained from fielding fully autonomous robotic weapons, out of fear that not having

a “human in the loop” could result in horrific mistakes, including civilian casualties or

accidental escalation in crises.62 However, some experts and government officials have argued

that over time, automated weapons will become increasingly safe and eventually less error-

prone than humans.63 Before we reach that point however, partial advances in safety may

lead governments to decide that AI weapons are safe enough to deploy, even if substantial

risks remain.64

These are complex and consequential dilemmas, and we do not mean to suggest that

carrying out and sharing research aimed at improving the safety of weapons technologies

is always harmful. As our results show, in situations of high enmity, states may already

be willing to deploy their most powerful weapons: making those technologies safer in such

cases reduces shared risks. However, researchers should consider the possibility that sharing

incremental safety insights could backfire in some situations because of risk compensation.

Our model suggests it would sometimes be preferable to wait to share the results of safety re-

search until it has progressed far enough to substantially reduce the risk of powerful weapons

technologies. In some other cases, researchers might do more good by prioritizing safety re-

search on a less potent version of a technology, to encourage states to substitute it for a more

62Horowitz 2018; Future of Life Institute 2021
63See for example: Arkin 2010; Geist and Lohn 2018; U.S. Government 2018.
64Even in matters of nuclear warfare, the U.S., Russia, and China seem to be taking steps toward greater
automation, such as systems for recommending retaliatory nuclear strike options for decision makers to
consider (Klare 2020). Lowther and McGiffin (2019) argue that the US should consider creating a fully
automated system to detect a nuclear attack and launch a retaliatory nuclear strike. Ideas for improving the
reliability of automated nuclear command and control systems may therefore lead countries to take greater
risks overall.
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capable but riskier system.65

Conclusion

One theme in this analysis of risky technology races is the significance of actors who are not at

the technological vanguard. The capabilities and intentions of these actors have substantial

influence on the incentives of technology leaders. When laggards are capable, they are also

dangerous: they have more incentive to trade safety for competitive advantage and when

they are determined to be first, to influence events or to obtain status recognition, it is a

trade they will make. States that fear they are falling behind technologically are more willing

to base their security on capabilities and strategies that imply higher risk of escalation to

great-power conflicts that would be catastrophic for all.66

Another theme is the surprising effects of safety research. We would expect safety research

to improve welfare, but this is not always the case. Safety advances can embolden actors to

risk implementation of a technology they previously considered too risky. Further, the bar

for how effective a safety advance must be to increase welfare is higher the lower enmity is

because actors with low enmity are already more cautious.

There is much more to be said about why decision makers make the technological risk

calculations they do. We encourage more research in this area, and we believe it will return

to the sentiments of Rachel Carson: “All this has been risked — for what? Future historians

may well be amazed by our distorted sense of proportion.”67 It is essential to understand

where our risk tolerances present the most danger to welfare. One reason is that the scope

of potential catastrophes is probably increasing.

65Policymakers too should consider potential risk compensation before sharing safety insights about weapons
technologies with other governments.

66Russia’s efforts to develop tactical nuclear weapons capabilities to a greater extent than other countries may
be an example of such a high-risk strategy. See Congressional Research Service (2021), Nonstrategic Nuclear
Weapons.

67Carson 2002, 8.
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