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ABSTRACT

Recent releases of frontier artificial intelligence (AI) models have largely been gated, due to a mixture
of commercial concerns and increasingly significant concerns about misuse. However, closed release
strategies introduce the problem of providing external parties with enough access to the model for
conducting important safety research. One potential solution is to use an API-based “structured
access” approach to provide external researchers with the minimum level of access they need to do
their work (i.e. “minimally sufficient access”). In this paper, we address the question of what access
to systems is needed in order to conduct different forms of safety research. We develop a “taxonomy
of system access”; analyse how frequently different forms of access have been relied on in published
safety research; and present findings from semi-structured interviews with AI researchers regarding
the access they consider most important for their work. Our findings show that insufficient access
to models frequently limits research, but that the access required varies greatly depending on the
specific research area. Based on our findings, we make recommendations for the design of “research
APIs” for facilitating external research and evaluations of proprietary frontier models.
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Executive Summary

Recent releases of frontier artificial intelligence (AI) systems, including OpenAI’s GPT-4 and Google’s PaLM 2, have
predominantly been gated, with access provided through online interfaces. This approach makes it substantially easier
to prevent the misuse of models, in addition to better facilitating their commercialisation. However, such release
strategies introduce the challenge of providing adequate access to systems to third-parties for the purpose of independent
research and evaluation. One potential solution for facilitating external research and scrutiny of models while retaining
the benefits of gated release is to provide researchers with minimal sufficient access to systems through structured
access solutions, such as an Application Programming Interface (API). However, there is little clarity regarding the
functionality that would be most useful for researchers if provided through such a service. Thus, in this report, we
address the questions of How is research currently affected by limited access to frontier models? and What access to
models do AI researchers consider most important for different AI research areas?

Contributions

We introduce a taxonomy of system access that categorises the different ways in which researchers can interact with a
model for their research. The taxonomy consists of five categories:

1. The ability to sample from a model: this could include the ability to sample from the model in an automated
manner, specifying the sampling algorithm and associated hyper-parameters, or access the probabilities and
logits associated with the model’s outputs.

2. The ability to fine-tune the model: this could include the ability to fine-tune it through supervised learning or
reinforcement learning, as well as the option of using a custom-defined loss function.

3. The ability to inspect model internals: this could include the ability to inspect parameters, activations and
attention patterns, gradients, and embeddings, as well as the ability to perform arbitrary computations on
observed values.

4. The ability to modify model internals: this could include parameters, activations and attention patterns, and
embeddings, as well as the ability to perform arbitrary computations in-place.

5. Access to relevant additional system information and artefacts: this could include pretraining datasets,
training snapshots, collections of “model families",3 and information about the model’s architecture and
training procedure.

Based on this taxonomy, we conducted an analysis of the literature, assessing how frequently papers from different
subfields of AI research make use of each of the forms of access. Additionally, we held interviews with AI researchers
in order to gain deeper insight into how researchers commonly interact with models, how access to models impacts
their work, and how this might change in the coming years.

Findings

Based on both the literature analysis and researcher interviews, we highlight four key findings:

• Limited access to models curtails certain research projects
Researchers’ choice of research agenda is influenced considerably by access considerations, with certain
agendas, such as some which aim to understand behaviours only exhibited by the most capable systems, being
dropped due to insufficient access to suitable models.

• A lack of model information limits the conclusions that can be drawn from results
Researchers are often unable to pose hypotheses or draw conclusions from experimental observations due to a
lack of relevant information regarding the subject model’s architecture or training procedure.

• Basic sampling access is sufficient for many current model evaluations, but may not be for similar
evaluations of future models
Research that aims to evaluate and measure the capabilities and safety of models is currently largely behavioural
in nature, and thus frequently only depends on the ability to sample from a model, preferably after dedicated
fine-tuning. However, researchers believe that it is important to move beyond behavioural evaluations in order
to be able to develop a more comprehensive understanding of a system’s functioning.

3We use the term ‘model families’ to refer to collections of related models that systematically differ among one or more
dimensions. For example, a model family may comprise models of differing sizes that nonetheless share a common training
procedure and dataset.
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• Interpretability techniques could become crucial for evaluating the capabilities and safety of models
Interpretability research that aims to explain how and why a model behaves as it does is one of the more access-
intensive areas of research, often requiring the ability to both inspect and modify model internals. Researchers
agree that, though the field is currently in its nascency, the application of mature interpretability methods
to evaluate model capabilities and safety would be especially valuable. However, there was disagreement
regarding how attainable this is. If the field develops reliable and standardised evaluation methods, it may
become increasingly important to implement methods for facilitating access to sensitive model internals.

Recommendations

We recommend that model providers develop and implement “research APIs” to facilitate external research on, and
evaluation of, their AI models. Such an API should also incorporate comprehensive technical information security
methods due to the sensitive nature of the information and access provided through the service. We recommend the
implementation of the following four features as core functionality that such a service should provide – at least for
sufficiently trusted researchers, working on sufficiently relevant projects – in addition to the features present in current
APIs that allow for extensive sampling from models.

• Increased transparency regarding model information, for example: clarity regarding which model one is
interacting with, information about models’ size and fine-tuning processes, and information about the datasets
used in pretraining.

• Ability to view output logits, as well as choose from and modify different sampling algorithms.
• Version stability and back-compatibility so as to enable continued research on a given model, even after the

release of newer systems.
• The ability to fine-tune a given model – through supervised fine-tuning, at a minimum – alongside increased

transparency regarding the algorithmic details of the fine-tuning procedure.
• Access to model families: collections of related models that systematically differ along a given dimension,

such as number of parameters, or whether and how they have been fine-tuned.
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1 Introduction

Recent releases of frontier Artificial Intelligence (AI) systems have predominantly been gated, with access to models
such as GPT-4 [1] and PaLM 2 [2] being provided through application programming interfaces (APIs) and chatbots,
while keeping model weights and code undisclosed. This has the benefit of limiting the proliferation of potentially
harmful AI capabilities, giving both policy-makers and civil society more time to enact safeguards [3]. Gated release
also facilitates preventative measures against the potential malicious use of AI’s dual-use capabilities. However, such
release strategies raise the challenge of providing sufficient access for conducting important research, evaluation, and
auditing of frontier systems. One potential solution for maintaining the benefits of gated release while allowing for
external research and scrutiny of new models is through structured access [4] – providing minimal sufficient access to
researchers and auditors through infrastructure such as a specialised API. This raises the question of what constitutes
‘minimal sufficient access’ that we aim to address in this report. Specifically, we consider the two research questions of
How is research currently affected by limited access to frontier models? and What access to models do AI researchers
consider most important for different AI research areas?

In addressing this pair of questions, we present three contributions. First, we introduce a taxonomy of system access
permissions in which to ground later discussions. Second, we present findings from a review of AI literature that focuses
on the models that are used as research subjects, the ‘mode of access’ through which researchers have access to these
models, and the specific model information and access used. Third, we support this literature analysis with qualitative
results from semi-structured interviews with AI researchers, addressing how researchers interact with models, how
access to models impacts their work, and how this might change in the coming years.

Our findings show that limited access to models has a considerable impact on the choice of projects that researchers
pursue, with certain agendas, such as some which aim to understand behaviours only exhibited by the most capable
systems, being infeasible due to insufficient access to suitable models. This is particularly salient for those studying
emergent capabilities that only appear in models above a certain size, as access to the largest models is strictly necessary
for such work. Furthermore, a lack of information about models often limits the conclusions that can be drawn from
results, for example, conclusions about why a model has the capabilities it has, beyond simply noting that it has
them. On the other hand, research aimed at evaluating systems is less constrained, largely relying on the ability to
sample from a model via current APIs, due to the behavioural nature of current approaches. Finally, we find that
interpretability research requires comprehensive access to model internals, including the ability to observe and modify
weights and activations. Despite the nascency of many interpretability techniques, researchers predict that, if they
mature and become standardised, such techniques will be especially important for evaluating the capabilities and safety
of frontier models. This suggests that providing access to model internals could become essential for external research
and evaluation.

Based on these findings we propose the development of ‘research APIs’ and lay out what features should be incorporated
in such services, over and above those provided in current APIs. Specifically, we recommend that research APIs:
provide greater transparency regarding model information; provide access to output logits; prioritise version stability;
facilitate flexible fine-tuning of models; and provide access to model families.

Related Work

Responsible Deployment. The discussion around deployment strategies for AI models is still nascent having been
placed in the spotlight by the staged release of OpenAI’s GPT-2 model [5, 6]. Recent scholarship has focussed on
illuminating the space of options between the two limits of either openly releasing a model or not [7, 8] and building
frameworks for navigating the space of options [9, 10, 11]. An increasingly common deployment strategy of providing
access to a model through an API relates to the notion of ‘structured access’ defined by Shevlane [4] as ‘constructing,
through technical and often bureaucratic means, a controlled interaction between an AI system and its user’ such
that ‘[t]he interaction is structured to both (a) prevent the user from using the system in a harmful way, whether
intentional or unintentional, and (b) prevent the user from circumventing those restrictions by modifying or reproducing
the system.’ The concept is explored further in [12], with an emphasis on safety research and auditing as a core use case
for structured access, as well as in the second chapter of [13]. Finally, there have been a number of efforts proposing
concrete recommendations for responsible deployment [14, 15].

Auditing and External Scrutiny of AI Systems. Independent auditing and evaluation of AI models has been called for
by numerous voices, including private AI labs themselves [16, 17, 18]. A recent survey of experts in labs, academia,
and civil society showed that 98% of respondents supported “pre-deployment risk assessments, dangerous capabilities
evaluations, [and] third-party model audits” [19]. Preliminary work has aimed to lay the foundations for how a
‘third-party auditing ecosystem’ could function [20, 21, 22, 23, 24, 25, 26], though technicalities regarding access
requirements remain underexplored.
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2 A Taxonomy of System Access

In this section we introduce a taxonomy to systematise the forms of access to models used by researchers. Specifically,
the taxonomy focuses on access to language models based on the transformer architecture, and will only partially
apply to other types of system. The taxonomy is divided into five categories encompassing sampling, fine-tuning,
inspecting, modifying, and ‘meta’. Additional information regarding the taxonomy, including example publications that
use each form of access, and whether each form of access is available in current APIs, is given in Appendix A. Due to
its technical subject nature this section assumes that the reader has some prior technical knowledge of contemporary AI
systems. The discussions in later sections do not depend on understanding the material presented here, and so readers
without interest in the details of system access can proceed to Section 3.

(A) Sampling

(A.1) Basic 
sampling
(A.2) Logits and 
probabilities
(A.3) Sampling 
algorithms

(B) Fine-tuning

(B.1) Supervised
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(D.4) Custom 
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(E.4) Model 
information

Figure 2: The taxonomy of system access.

Sampling

The first category of our taxonomy concerns sampling from a model via an API, that is, providing a prompt and
observing the model’s response. It is worth noting that this is distinct from a chat or playground interface as an API
can allow for sampling to be automated, as well as potentially facilitating the modification of sampling algorithms and
related hyper-parameters.

(A.1) Basic Sampling: The first category represents the fundamental ability to receive output from a model, based on
input prompts, in an automated manner.

(A.2) Logits & Probabilities: Building upon basic prompting, the user may be given access to observe the logits or
derived probabilities of output tokens4 for a given input to the model. These are values representing the likelihood that
each token will be selected to appear next in the model’s output.5

(A.3) Sampling Algorithms: Finally within sampling, we have the ability to select from various sampling algorithms
and adjust relevant parameters relating to the chosen algorithm. These are the algorithms that, given the logits of next
tokens, selects the single token to appear next in the model’s output.6

Fine-tuning

The second category of system access concerns the fine-tuning of models, that is, additional training, possibly on
specific tasks, of a pretrained ‘base’ model.

(B.1) Supervised Fine-tuning: The researcher trains the model to optimise a supervised loss function. This could
include the possibility of selecting different optimisation algorithms and related hyperparameters.

4Tokens are the fundamental, typically sub-word, building blocks through which language models process text. Short, common
words such as ‘the’ are likely represented as single tokens, whereas a longer, less-common words are typically broken down into
multiple tokens. For example, the word ‘computation’ may be represented by the tokens ‘com’, ‘put’, and ‘ation’.

5This can be facilitated in a number of ways. For example, the user could specify a specific token (or set of tokens) for which
they would like to observe the logits or probabilities at each position in the output (known as ‘scoring’). Alternatively, the user could
be presented with the logits or probabilities of each token generated in the output, or the logits or probabilities of the top-n most
likely tokens at each position of the output.

6For example one may want to adjust the sampling temperature, a parameter of the softmax function that retrieves token
probabilities from logits that alters the level of randomness in a model’s output. A sampling temperature of 0 will result in the next
token always being that with the highest logit score, with higher temperatures increasing the likelihood that tokens with lower logit
scores are sampled.
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(B.2) Fine-tuning with Custom Loss: The researcher fine-tunes the model using a loss function they provide. This
allows the user the flexibility to penalise or incentivise certain behaviours through augmenting a standard supervised
loss with additional terms. We take this subcategory to also include other modifications of fine-tuning, such as ‘freezing’
sections of the model such that the parameters of these sections are not updated during fine-tuning.

(B.3) Fine-tuning with Reinforcement Learning: This involves viewing the model as a reinforcement learning
agent that is aiming to maximise its expected value of a reward signal over time [27]. In practice, fine-tuning with
reinforcement learning is usually carried out through procedures such as ‘reinforcement learning from human feedback’
(RLHF) [28, 29] or ‘constitutional AI’ (CAI) [30] that can involve multiple training steps, auxiliary models for
estimating reward signals or human preferences, and human input.

Inspecting

Inspecting is the ability for a user or researcher to ‘open the black box’ and observe the model’s internals, without
necessarily being able to make modifications to them – though such permissions, covered in ‘modifying’ below, may
also be granted. This category is subdivided into subclasses depending on the component of the model being inspected.

(C.1) Parameters: The ability to view the learnt parameters of the model – that is, the numerical values that determine
how information is processed by the model and thus the generated output.7

(C.2) Activations & Attention: The ability to view activations and attention patterns for a given input to the model.
This can be thought of as viewing the specific computations carried out to transform the user-provided input into the
model-generated output.8

(C.3) Gradients: Gradients can be thought of as the updates made to a model’s parameters during training, in order to
improve performance on the training objective. Researchers may be interested in observing the gradients of a given
objective (loss function) with respect to model weights on a given input, as computed by backpropagation, without
applying the resulting updates.

(C.4) Embeddings & Residual Stream: This mode of access, specific to transformers, allows users and researchers to
observe the embeddings and the residual stream at a given point of the model. This can be thought of as viewing the
information passed between different layers of the model.

(C.5) Custom Function Insertion: Performing arbitrary calculations on any of the four prior observables, while
maintaining their values. This may include the practice of attaching ‘probes’, other ML classifiers that train to predict
features of the network based on activations, or other model internals. Note that this does not entail more comprehensive
visibility than the prior subcategories. For example, training a probe on activations may not require a researcher to be
able to view the exact activation values that the probe is being trained on.

Modifying

Related to the previous category, modifying allows a researcher to make changes to model internals in-place during
inference. One prominent example is that of performing ‘ablations’: setting parts of a model to either zero or their
empirical mean, in order to suppress their contribution to the model and observe how model behaviour is affected. Note
that the ability to modify model internals may not assume the ability to inspect them. For example, one may be able to
gain useful insight by performing ablations without knowing the original values of the part of the model that is being
ablated.

(D.1) Parameters: Analogous to (C.1) is the ability to modify the learnt parameters of the model.

(D.2) Activations & Attention: Secondly, is the ability to modify activations and attention patterns. In addition to
ablations, one example of activation modification is that of ‘path patching’: copying the activations from a given
attention head for a given input, and pasting them in place during the forward pass on a different input [31].

(D.3) Embeddings & Residual Stream: Thirdly is the ability to modify the vector embeddings and residual stream at
a given point in a transformer-based model.

7These could be, in the case of multi-layer perceptrons (MLPs), the weights and biases of the network, or for attention layers, the
weight matrices WQ, WK , and WV that produce the query, key, and value vectors, respectively.

8For MLPs this is the value of each neuron after the activation function. For attention this could be the attention pattern
(sometimes also referred to as ‘attention weights’) at a given attention head, i.e. the square matrix softmax

(
QKT√

dk

)
for that head.
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(D.4) Custom Function Insertion: Finally, and related to (C.6), is the ability to perform arbitrary calculations of the
above observables, such that the calculation modifies their values in-place during a forward-pass, as well as perhaps
returning a value to the user.

Meta

The final category concerns what model is made available, as well as any information or supplementary materials, as
opposed to components of the model or ways of interacting with it.

(E.1) Training Datasets: The first subcategory concerns access to, or knowledge about, datasets used in the pretraining
or fine-tuning of models. There is a wide range of potential levels of visibility here, from having unrestricted access to
the entire dataset used during training, through to simple qualitative or quantitative facts about the data. In the middle
of this range, one could imagine giving permissions to make a limited number of queries to ascertain whether a given
string of text is in the dataset.

(E.2) Training Snapshots: Secondly, access could be given to versions of the model as it was at different stages of
training. This could be especially useful for improving our understanding of how model capabilities develop through
the training process.

(E.3) Model Families: Thirdly, and similar to training snapshots, users and researchers could be provided with a ‘model
family’: A set of related models that systematically differ among one or multiple dimensions. For example, a model
family could be comprised of models of differing sizes yet share a training procedure, or models that have undergone
different amounts or types of fine-tuning. This feature could be especially useful in studying phenomena such as scaling
laws [32, 33].

(E.4) Model Information: Finally, we have the broad category of model information, encompassing quantitative and
qualitative data about the model such as its architecture, number of parameters, or training procedure.

3 Literature Analysis

In this section we analyse the AI safety research literature to investigate how researchers have interacted with frontier
models. We first describe the method through which we constructed a database of relevant AI safety papers, and then
present results from a quantitative analysis of the literature, focussing on how researchers use models, and the ways in
which they obtain access to them.

3.1 Methodology

To construct our sample of relevant literature, we followed a literature search composed of the following three steps:9

1. Collecting all safety-relevant papers published by Google DeepMind, OpenAI, Anthropic, Redwood Research,
and Conjecture since 2020;1011

2. Manually filtering for relevance by ensuring that a paper’s abstract met comprehensive relevance criteria (as
detailed in Appendix B);

3. Collecting all papers that cite those already collected, subject to the same manual filtering as per step 3.12

This process resulted in 66 papers that appear to collectively capture the most significant research directions in the
field of AI safety. Of these papers, 30 were collected via the initial search over publications from AI firms, with the
remaining 36 collected as citing papers. More details on the literature collection process, including the filtering criteria
applied in step 2 can be found in Appendix B, and a complete list of the papers analysed is given in Appendix C.

After building our database, we manually coded for features including area of research, model(s) studied, mode of
access to model(s) studied, and system access according to the taxonomy introduced in the previous section. This
resulting classification of research areas consisted in four categories:

9Literature was collected between April 3rd and 7th, 2023. Papers published after this period are thus not included.
10By ‘safety-relevant’ we mean: for OpenAI, those papers in their research index with any of the tags ‘adversarial examples’,

‘interpretability’, ‘robustness’, or ‘safety & alignment’; for Google DeepMind, those papers in their research catalogue with either of
the tags ‘safety’, or ‘verification-fairness-interpretability’; for all other labs, all papers.

11We chose to only collect papers published since 2020 as we are mainly interested in research carried out after the advent of large
models and the use of structured access approaches.

12Citations were retrieved from Google Scholar. Some publications were not listed on Google Scholar at time of collection, and
thus any citing publications were unable to be retrieved.
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• Alignment: Research that aims to improve an AI system’s alignment with user preferences, reducing toxicity
and increasing honesty and helpfulness (19 papers);

• Evaluation: Research that aims to develop and test methods for assessing the capabilities or safety and
alignment of AI systems (15 papers);

• Interpretability: Research that aims to build and test theories for understanding and explaining the inner
functioning of AI systems (25 papers);

• Robustness: Research that aims to improve the resilience of AI systems, for example in the context of
distributional shift or adversarial attacks (7 papers).

A total of 18 publications were from academic researchers, 37 by researchers at private firms, 10 resulting from a
roughly equal collaboration between academia and industry, with one paper by independent researchers. Furthermore,
32 papers interacted with models to which the researchers had ‘internal’ access (i.e., they, or their organisation, had
built the model), 6 projects interacted with a model through an API, 22 studied models that were open-source, with the
remaining 6 papers interacting with multiple models through a combination of these approaches.

3.2 Results

Table 1 shows a breakdown of publications by researchers in industry firms, academia, or a collaboration, along with
how the models studied in those publications were accessed.

Internal API Open-source Mixed
Lab 26 1 7 3
Collaboration 4 0 5 1
Academia 1 5 10 2
Independent 1 0 0 0

Table 1: Number of papers for each combination of mode of access and primary institutional affiliation.

Researchers in industry largely study models to which they have internal access, with only a handful of publications
using open-source models, or those available through an API. Conversely, publications by academic researchers were
far more likely to interact with models through an API, or studied models that were available open-source.

Table 2 shows a similar breakdown, contrasting area of research with mode of access.

Internal API Open-source Mixed
Alignment 11 0 8 0
Evaluation 5 5 2 3
Interpretability 14 0 9 2
Robustness 2 1 3 1

Table 2: Number of papers for each combination of mode of access and research area.

Here we clearly see that both alignment and interpretability research largely interact with models available internally or
open-source – the two modes of access that provide complete access to model internals and the ability to modify, for
example through fine-tuning. On the other hand, publications classified as evaluation make up the majority of instances
of interacting with models through an API. Robustness publications do not show a clear preference for any particular
modes of access.

Finally, Figure 3 shows the frequency of papers that used each form of access, as per the taxonomy introduced above,
broken down by research area. This figure shows a few noteworthy results. Firstly, almost all papers sampled from a
model. This is to be expected as basic sampling (A.1) represents the most minimal possible access to a model. Secondly,
almost 75% of papers categorised as alignment research performed fine-tuning on a model (B.-), as would also be
expected as many current alignment techniques rely on fine-tuning. Thirdly, the ability to inspect and modify model
internals was most often used in research classified as interpretability, with the ability to inspect and modify activations
(C.2; D.2) being slightly preferred over other internal features of a model. Additionally, robustness research showed
preferences for inspecting the logits and probabilities of output tokens (A.2), as well performing supervised fine-tuning
notably more than both evaluation and interpretability papers. Finally, both alignment and evaluation research made
heavy use of model families (E.3).
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Figure 3: The proportion of papers of each research area that made use of each form of system access.

4 Interview Analysis

To complement findings from the literature analysis we conducted interviews with AI researchers. Interviews were
constructed to cover a number of themes, including: researchers’ experiences interacting with AI models for their
research; their views on how AI research may develop in the coming years; and how such developments may affect
the access to AI systems required. A total of 12 interviews were held with AI researchers, selected to cover a range
of seniorities, research areas, and employers. Further details regarding interview participants and methodology are
presented in Appendix D.

4.1 Results and Discussion

In this section, we describe seven themes from the interviews. Modifications made to quotes for readability and
anonymity are shown in square braces. Further supporting material for each theme can be found in Appendix E.

Theme 1: Availability of model access is a significant factor in determining which research projects are pursued

The first theme extracted from interviews concerns how, for researchers that are primarily affiliated with academic labs,
a lack of access to suitable models can often be the principal determining factor for whether a particular research project
is carried out or not. This sentiment was expressed by seven interviewees, all of which had primary affiliations in
academia. For example, one interviewee stated that “there are certainly entire projects that we might have done at the
[academic] lab if we might have had access, but [we] just settled on other projects to avoid the limitations.” Another
participant gave a concrete example relating to having fine-tuning access to models, claiming that “if I can’t find . . . a
practical way to do [fine-tuning], I basically won’t be able to do the project [because] . . . the whole question is about
. . . model behaviour in response to fine-tuning.” In this case, using open-source models was also not viable due to cost
and complexity involved in fine-tuning the largest open-source models.

10



Furthermore, even in cases where suitable access does not render a research project impossible, researchers found that it
could limit the scope and ambition of the project. For example, when asked whether the availability of models afforded
to them with sufficient access restricts the research agendas they can pursue, they replied “Oh yeah, absolutely, [it]
absolutely limits it – and it’s a major issue!” They went on to give the example of studying emergent capabilities in
language models (see Theme 4) as a research agenda that can be limited by insufficient access to the most capable
models.

This theme highlights the core issue motivating this work – that the move towards more closed releases of frontier AI
models poses significant challenges to researchers that are not affiliated with industry labs, such as those in academia,
wanting to carry out research on these models.

Theme 2: Current APIs lack crucial model information

Similarly to the first, the second theme inferred from interviews related to current difficulties faced by academic
researchers, though focussed more narrowly on the availability of model information (E.4) in current APIs. In particular
researchers emphasised the importance of such information for carrying out rigorous empirical investigations into
models’ abilities, as well as how current APIs lacked transparency regarding this information, thus limiting the
conclusions that could be drawn from such investigations. These issues were raised by eight researchers, of which five
had primary affiliations in academia.

A number of specific details about models were mentioned as particularly important, including: clarity regarding which
specific model one is interacting with through an API; information about the training procedures of available models,
for example whether they had been fine-tuned with RLHF; and algorithmic details about the fine-tuning that’s being
performed through an API. One researcher gave a concrete example pertaining to how a lack of information about the
dataset on which a model was trained can preclude concrete conclusions about model capabilities being drawn from
experiments:

I’m very interested in . . . generalisation behaviour, [so for example], when you train a model with
RLHF, how does that change the . . . behaviours that you didn’t train it for, but it just . . . spontaneously
generalises to? . . . But if you don’t have the [training] data, it’s hard to know . . . what to conclude if you
see a worrying behaviour, and you’re not sure [if this is] just something from the data, or [if] this is a
worrying generalisation.

This lack of clarity can also be observed in the literature, for example in [34], where the author had, under limited
information about a model’s training procedure, assumed that the model they were investigating was fine-tuned using
RLHF. After publication they received ‘evidence from multiple credible sources’ that it in fact had not been, thus
rendering their explanatory hypotheses for the observed behaviour, which had assumed RLHF, irrelevant. A further
example is from Wei et al. [35], where, when aiming to evaluate the effect of instruct fine-tuning across multiple
models, the authors write: “We do not compare InstructGPT against GPT-3 models in this experiment because we
cannot determine if the only difference between these model families is instruction tuning (e.g., we do not even know if
the base models are the same).”

Despite these frustrations, some researchers noted that the situation seems to be moving in the right direction, with labs
such as OpenAI taking steps towards providing more clarity about the models available on their API. In the words of
one researcher, “two months ago, [OpenAI] published . . . a specific mapping from models described in their papers to
API IDs.13 And the fact that they published [this] was hugely helpful.”

Theme 3: Basic sampling access is sufficient for some research areas

Despite the limitations imposed on research identified in the previous themes, interviewees pointed out that certain
research directions are still feasible with basic sampling access through current APIs (A.1). This was especially the case
for model evaluations which are largely oriented around observing model behaviour. As one interviewee put it, “there’s
. . . still lots of low-hanging fruit in terms of evaluating language model behaviours, just purely in this . . . input-output
format.”14

However, some researchers caveated this claim with the observation that, due to the large quantity of tokens required to
be generated as part of rigorous experiments, the cost of doing so could become prohibitive for academic labs with
tighter budgets. In the words of a PhD student at an academic lab working on devising methods for model evaluation:

13Models – OpenAI API
14One potentially note-worthy observation from this quote is the possible implication that this ‘low-hanging fruit’ will eventually

become harvested to depletion, at which point basic sampling access will no longer be sufficient for model evaluation. This is
discussed further in Theme 7.
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“one barrier of course is: unless [OpenAI] have given you credits, it can get pretty expensive to run these experiments
with the API, especially when you want . . . results with statistical significance.” It is worth noting that OpenAI does
address this through their researcher access program which provides subsidised model access for use in research settings,
though perhaps this does not lower the cost barrier sufficiently far.

A further interesting point raised by another participant related to increasingly complex chains of multiple models
used in both training and evaluating models, such as in [36]. Such set-ups can be observed in the literature, with
auxiliary models used for various purposes such as classifying the outputs of other models, modelling a reward signal,
or generating prompts to be given to other models. While this does not necessarily require access to each component
model beyond basic sampling, such regimes may present their own difficulties regarding the flexibility of structured
access solutions required to facilitate such experimental set-ups.

Theme 4: Access to the largest models is non-negotiable for some research agendas

In contrast to the previous theme, researchers reported that there are some research agendas where deeper access to the
largest and most capable models is crucial. Since these are the same models to which external researchers will only
have limited access, these research agendas are unable to be pursued externally.

One example that was brought up in seven of the twelve interviews was that of studying ‘emergent abilities’ in language
models, loosely defined by Wei et al. [37] as abilities that are “not present in smaller models but [are] present in larger
models.” Over 100 such emergent abilities have been documented, including performing arithmetic such as 3-digit
addition and subtraction, and solving linguistics puzzles [38].

In most cases, interviewees emphasised the difficulty of studying emergent capabilities by pointing out the near-
impossibility of carrying out any useful work on even the largest open-source models:

[For some projects,] we were studying high-level behaviours that we just didn’t see in small models,
where . . . it was quite clear that the models that we could reasonably, straightforwardly run ourselves,
in-house, on hardware we owned, would be completely inadequate. And the best downloadable, . . .
public models that could be run with much more difficulty, potentially on cloud hardware, were maybe
borderline viable, . . . but still quite significantly worse than the frontier, in ways that would limit research.

A specific example given by another researcher concerned a model’s ability to perform ‘variable binding,’ whereby you
inform the model that certain words are to be represented by variable names such as x and y, and continue interacting
with the model, using x and y in place of their respective referents. According to this participant,

ChatGPT and these super-huge models [like] GPT-4 don’t really have any trouble with variable bindings.
. . . But if you go to GPT-Neo 20B, or you go to other large [open-source] models, they’re not so good at
that. Maybe they’re OK, [but] they sort of struggle. . . . So when models are struggling to do this it gives
us pause: ‘Is it worth us understanding the mechanisms of a model, when the model can’t actually do
[the] thing that we’re investigating?’

There is cause for optimism however, due to the fact that, as in the previous theme, much of the research into emergent
abilities is currently behavioural, thus requiring only basic sampling access (A.1) and potentially model families (E.3) if
one wishes to investigate at what model size a specific ability emerges. This may mean that, despite the necessity of
using models that are currently only available through APIs, it may be feasible to facilitate this research due to modest
access requirements.

This issue is also addressed in the literature, for example, Leahy [39] writes that one of the biggest motivators for
releasing capable AI models is that “[t]here is significant, important safety research that can only be done with access
to large, pretrained models.” It is also noteworthy that this is frequently cited as one of the reasons why AI firms such
as OpenAI and Anthropic continue to develop larger and larger systems [see, e.g., 16, 17].

Theme 5: Research areas differ in their reliance on knowledge of models’ underlying architecture

As we were interested in researchers’ views on how their work may develop in the coming years we asked a question
concerning the significance of ‘AI paradigm shifts’ for their work, where we loosely define an ‘AI paradigm’ as an
algorithmic or architectural trend, such as deep learning or use of the transformer architecture. Specifically, we asked
researchers about the extent to which their work was paradigm-agnostic, such that it could be conducted on or with
systems from a different, potentially unknown, paradigm.

We found researchers to be split on this question, roughly corresponding to their area of research, with those working
on alignment and interpretability stressing the importance of knowing such facts about the model (in line with Theme
2), with one researcher explaining that parts of their research “implicitly [relies] on the assumption that [a system is
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structured] like a typical present-day large language model, and that lets you bring in quite a number of background
assumptions.”

On the other hand, those working on developing evaluations expressed more ambivalence due to the current behavioural
nature of the research area (as in Theme 3), claiming, for example that “the specific . . . way [that] we’re going about
evaluations today is quite specific to large language models. I think . . . if [some model from another paradigm] was not
a transformer, but was . . . still a large language model, . . . then we wouldn’t have to change much at all, because we’re
not interacting with the internals in any way.”

However, if we take language models to be a paradigm, then one could argue that with recent developments in multi-
modality and tool use such as Gato, Toolformer, or ChatGPT plugins [40, 41, 42], we are currently undergoing a
paradigm shift. In this case, it seems that many of the current evaluation techniques would not generalise, and new tools
would have to be developed in order to assess the non-text-based abilities of frontier models.

Theme 6: Interpretability research requires comprehensive access to model internals

One of the least surprising areas of consensus found amongst interviewees was the status of interpretability research
requiring more access than other agendas, requiring comprehensive access to inspect and modify model internals. As
one researcher explained, “if you’re doing interpretability then, at least at our current level of understanding, you’d
need everything. You’d need . . . full code access to the model in some complicated way. . . . In the future maybe we
can fit this stuff behind an API but it’s not true yet.” This confirms findings from the literature analysis that show an
increased use of model internals (C.- and D.-) in papers categorised as interpretability.

This suggests that interpretability agendas will be the most difficult to facilitate externally through structured access
approaches, due to the sensitive nature of the model internals to which access would need to be given. When asked
follow-up questions regarding whether solutions could be found that enable researchers to interact and experiment with
model internals without divulging the exact values of the internal parameters, researchers’ views varied. For example,
one participant tentatively claimed that “there are some representations inside these models which are understood well
enough that you could probe for their structure in an abstract way, without knowing what the actual activations or the
parameters are. . . . So causal tracing [for example]. . . . You could create these maps of what’s going on [and] where,
without actually knowing exactly what the numbers are.” On the other hand, another researcher was more pessimistic,
stressing that such a solution would necessarily give away a large amount of architectural information about the model
in question such as the amount and sizes of different components of a model such as MLP and attention layers.

Theme 7: Interpretability tools are nascent, but may become important for model evaluations

The final theme identified in interviews concerned the current and potential future status of interpretability research.
Specifically, participants agreed that methods for interpreting models were in very early stages of research and
development, and that a central hope of interpretability is to incorporate its methods in model evaluation. However,
views began to diverge when it came to the question of how realistic of a target this is.

As an illustration of this first point, one researcher explained that they were “fairly confident that no current inter-
pretability agenda is far enough along that you would want to use any kind of intermediate product of interpretability
to make confident claims about the kinds of questions that would be relevant for safety.” However, despite these
early stages, some researchers explained that early signs of standardised methods were appearing that centred around
inspecting and modifying activations, as opposed to concerning weights or gradients:

BB: So do you see activations . . . as becoming the most likely focus point of interpretability techniques?
5qq0g: I mean, it already is. Will it be in the future? It’s hard to say. I feel like it depends on how good
we get at other things. But by default, yeah – all the techniques are based on activations.

This corroborates the slight preference for access to activations observed in the literature analysis.

A benefit of the early stage of interpretability research is that it is currently not limited by insufficient access to large
models (as was discussed in Theme 4), with most research being carried out on small toy models, such as one-layer
transformers with as few as four attention heads [43]. This is by necessity as, in the words of one interviewee, “none of
the interpretability techniques are really mature enough to . . . be computationally doable for the largest models.”

With regards to the potential utility of interpretability tools in evaluations, researchers pointed to issues such as
evaluating model truthfulness, or detecting deception as particularly relevant areas:

I think ideally what we’d be able to do is, once we have evaluations and know what we want to measure,
we have really good interpretability tools that somehow identify traces of the behaviour. So . . . maybe
we identify a ‘truthfulness network’ or something like this, so that we can detect this in any model that
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we develop in the future. So [then] we don’t have to run a million samples through the model to be able
to know . . . how truthful it is. That’s [a] pretty pie-in-the-sky idea right now – it’s totally unclear how
exactly we would do this.

Some researchers were more pessimistic than others when it came to the feasibility of developing sufficiently powerful
and reliable interpretability tools for ensuring the safety of AI systems, with one participant likening the field to that of
neuroscience:

I think . . . a less-promising approach is the mechanistic interpretability approach, [where] the idea would
be to not necessarily trust what is said by the model . . . but to be able to gain lower-level, fine-grained
understanding about what the weights are doing, what the representations represent. . . . I think this is
an extremely, extremely ambitious research direction. An analogy that seems fair is comparing it to
neuroscience. Although neuroscience has [made some] progress, [it has also] barely made any progress
in like 30 years [when it comes to] understanding how the brain works.

5 Discussion

Based on our results from both the literature analysis and interviews, Figure 4 shows the most important forms of access
to models needed for our four focal areas of research.
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Figure 4: (Repeat of Figure 1) A breakdown of forms of model access that are essential for at least some valuable and
currently practical projects in each of the four research areas considered

Firstly, we see that experimental research focussing on alignment is one of the more intensive areas when it comes to
required access, depending heavily on the use of fine-tuning methods (B.-) as identified in Figure 3. This may explain
the observation that all publications classified as alignment research in the literature analysis utilised either private
or open-source models, with no alignment papers making use of an API. Furthermore, we see from the same figure
that alignment research also made use of both model families (E.3) and model information (E.4). Interviews with
researchers also raised the observation that alignment research often involves methods and resources not captured in
the literature analysis, such as human labelling of data and use of complex multi-model setups for more complicated
training and evaluation.

On the other hand, evaluation research requires comparatively little access to models beyond basic sampling access.
This is suggested by the literature review that shows that this research usually uses little more than basic sampling (A.1)
and model families (E.3). Furthermore, the literature shows that this research is the most likely of the areas considered
to interact with models through an API. This is further supported by results from interviews, with researchers claiming
that there is still useful work that can be done on evaluating models with only sampling access – provided that extensive
sampling can be automated. However, if one wants to make claims about why a model exhibits the behaviour that it
does, it is necessary to have more information about that model (E.4), including some access to inspect the model’s
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training data (E.1). Some researchers also reported that the ability to fine-tune models is also important for evaluation,
as it allows for the evaluation of capabilities that the model only exhibits after fine-tuning. This is particularly salient if
one views the process of fine-tuning as one of extracting knowledge or abilities learnt during a model’s pretraining,
rather than learning new abilities from scratch.

Interpretability was identified as the research area requiring the most comprehensive access to model internals, both by
the literature analysis and interview. Specifically, the ability to inspect and modify both model weights and activations
(C.1, C.2, D.1, D.2) was identified as a key access requirement for many interpretability methods. However, interviewees
were keen to emphasise the nascent status of the field, and that it may develop into a crucial component of AI safety
research and evaluations.

Finally, based on the small number of publications addressing robustness captured in the literature analysis, we identified
that, like alignment, it depends heavily on the ability to fine-tune models (B.-), as well as inspect the gradients of
parameters with respect to some loss function (C.3).

5.1 Four Main Takeaways

Here we highlight what we see to be the four most significant takeaways from the above analyses, in terms of their
implications for better facilitating external researcher access through structured access approaches.

Limited access to models curtails certain research projects

Researchers reported that limited access to models can have a considerable impact on the choice of projects that they
pursue, with some agendas being dropped due to insufficient access to suitable models. This is particularly salient for
those studying emergent capabilities that only appear in models above a certain size, as access to the largest models is
strictly necessary for such work. For example, recall the difficulties faced by one interviewee when trying to study
models’ abilities to perform variable binding, stemming from the fact that the best open-source models do not reliably
exhibit this capability, and they lacked sufficient access to models that do.

A lack of model information limits the conclusions that can be drawn from results

Researchers often have to make assumptions about models due to a lack of information about their architecture or
training. Such information was identified as particularly important for being able to draw conclusions about why
a model has the capabilities it has, beyond simply noting that it has them. Researchers found the introduction of
documentation such as OpenAI’s API model index particularly useful, but feel that there’s still far to go in this respect.

Basic sampling access is sufficient for many current model evaluations, but may not be for similar evaluations of
future models

Research that aims to evaluate and measure the capabilities and safety of models remains largely behavioural and
thus requires only sampling access – assuming the provision of suitable information about the models in question
– preferably alongside fine-tuning permissions. As one interviewee explained, while there is still low-hanging fruit
available when evaluating models in a purely behavioural manner, more comprehensive evaluations requiring deeper
access may become important “as systems get more capable, and the range of bad behaviours you’re worried about
gets broader.” Behavioural evaluations may also be insufficient for models that are not solely text-based, such as those
that interact with tools and plugins.

Interpretability techniques could become crucial for evaluating the capabilities and safety of models

Researchers were keen to note that interpretability tools, requiring comprehensive access to model internals, are
at a nascent stage of development, making them infeasible for the largest models. Researchers agreed that mature
interpretability methods would be especially useful for assessing the capabilities and safety of AI models but were
uncertain as to how realistic such an application would be. If significant advances are made in this area, it may become
increasingly important to develop methods for facilitating access to sensitive model internals.
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5.2 Balancing Proliferation Concerns

Here we discuss what we consider to be one of the most significant barriers to AI firms facilitating greater researcher
access to their models – the issue of dangerous capability proliferation.15 Proliferation is undesirable due to safety
concerns in addition to developers’ incentives to seek to retain their intellectual property for competitive reasons.16 For
example, safety-relevant concerns include how frontier AI capabilities could efficiently facilitate malicious uses with
profound impacts on society [see, e.g., 44]. It may be particularly difficult to prevent such misuses retroactively once
requisite capabilities have proliferated.

The challenge that proliferation concerns pose for the provision of access and sharing of information is underscored
by the observation that even information not immediately relevant for reproducing a model, such as a model’s size,
can influence proliferation if it acts as a target, incentivising other actors to build models of a similar size or larger.
Furthermore, the recent advent of ‘model imitation’, allowing for the cheap bootstrapping of model capabilities through
fine-tuning on output data generated by a more capable model, demonstrates that in some circumstances even the ability
to sample and receive output from a model can significantly contribute to proliferation [45, 46, 47].

While there is no perfect solution to balancing proliferation concerns against increased researcher access, we suggest
three possible avenues through which the trade-off could be navigated. Firstly, we propose providing ‘differentiated
access’ to researchers, whereby more sensitive forms of access are only granted to researchers with whom greater trust
is established, perhaps through the use of confidentiality agreements or NDAs,17 while continuing to provide shallower
access to a larger set of researchers. At all levels of trust, only the minimum access necessary for the proposed research
should be provided. Provision of access could also be dependent on external researchers’ demonstrating that sufficient
procedural and infrastructural safeguards are in place for addressing infosecurity concerns. Decisions regarding whether
access is granted for a proposed external research project could be made by a board, independent of the firm’s own
research activities, that is responsible for assessing the relative costs and benefits of providing access to external research
projects on a case-by-case basis. However, the implementation of a tiered access system in this manner would require
confronting many difficult normative questions regarding, for example, the criteria for inclusion in each tier, what is
(and is not) considered to be ‘research’, and how such decisions are made in a fair and just manner.

Secondly, technical approaches to ensuring nonproliferation, though still under development, should be explored as
methods that facilitate access to models while providing guarantees on what information is visible to researchers. For
example, Bluemke et al. [49] take inspiration from federated learning to suggest ‘federated evaluations’, allowing
external researchers or auditors to evaluate models while limiting direct access to the most sensitive information.
Alternatively, OpenMined propose an external auditing infrastructure based on using ‘fake’ or ‘mock pieces of the AI
system and third-party datasets’ to create audit code, that can then be remotely applied to the genuine system under
scrutiny [50].

Finally, the formation of a trusted, independent, third-party organisation may become desirable in order to implement
and enforce privacy and nonproliferation guarantees. There are numerous possibilities for what exactly is in the remit of
such an organisation [51, 52, 53]. For example, it could relate solely to release practices and system access, serving as
an intermediary between model developers and external researchers, much like the ‘Foundation Models Review Board’
proposed by Liang et al. [9]. The proposed body could also aid in the standardisation of responsible access for external
research, including the provision of our previous two suggestions of differentiated access and technical approaches.
On the other hand, a third-party organisation could have a broader remit, serving as a host for inter-organisational
collaboration on AI safety research through the sharing of information and provision of access to partner institutions
from both industry and academia [52]. This would help in addressing nonproliferation concerns while enabling
important safety research to be conducted on frontier models, especially in the longer term if interpretability-based
methods become more crucial (see Theme 7), or an ‘AI paradigm shift’ takes place (see Theme 5). However, care would
need to be taken to ensure that this organisation does not violate competition and antitrust law, raise the barrier to entry
to AI research to prohibitive levels, or exacerbate the concentration of power in the hands of leading AI firms.

15Sometimes also referred to as ‘diffusion’.
16See, for example, OpenAI’s GPT-4 Technical Report [1]: “Given both the competitive landscape and safety implications of

large-scale systems like GPT-4, this report contains no further details about the architecture (including model size), hardware,
training compute, dataset construction, training method, or similar.” (Emphasis added)

17The use of confidentiality agreements for this purpose has been suggested by Joelle Pineau, Meta AI’s managing director, as
reported in [48].
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6 Recommendations

We recommend that model providers develop and implement ‘research APIs’ to facilitate external research on, and
evaluation of, their AI models. This could be built on the same back-end as the current commercial API, or be
implemented in parallel as a separate service. The latter may be preferable if greater technical security guarantees
are required, creating a security overhead that would impact the efficiency of the commercial API. Such a security
overhead may become increasingly important due to the development of more powerful models, and a growing demand
for facilitating interpretability-based methods.

As we put forward these recommendations, we want to highlight that seemingly-minor decisions made when designing
a research API can have a large impact on how researchers interact with models through the service, and thus on the
resulting research.

6.1 What Would a Good ‘Research API’ Look Like?

Below we present a set of features and functionality that, based on the results presented in this report, would be most
valuable to researchers if included in a research API, and we believe to be plausible based on current technology and
infrastructure.

• Model information
Researchers expressed a strong desire for greater transparency regarding model information, for example:
clarity regarding which model one is interacting with; information regarding a model’s size18 and fine-
tuning process; and information about the datasets used in pretraining. Such information would enable
more confidence when drawing conclusions from observations, which in turn would advance our scientific
understanding of how models function.
Due to concerns about dangerous capability proliferation, this information should only be shared with the
most trusted researchers on the condition that they do not share it further. This could impose limitations on
researchers’ ability to publish results that rely on access to sensitive information – a factor that researchers
would need to consider when applying for access. Furthermore, providing information regarding a model’s
training data may face considerable legal barriers.

• Logits and Sampling Algorithms
The ability to view logits and associated output probabilities was highlighted as particularly important for
robustness research. Furthermore, output probabilities are crucial inputs to calculating a model’s cross-entropy
loss and perplexity – two standard measures of language model performance. Sampling algorithms, and the
hyperparameters thereof, can have a large effect on model behaviour. Thus the ability to observe the full
range of model behaviours associated with differences in sampling is important for evaluations of both model
capabilities and safety.

• Version stability and back-compatibility
Researchers would like to see models continue to be available in the research API even after the release of
later models. This helps ensure that research remains reproducible and that accurate comparisons can be made
between the current and previous state-of-the-art.

• Fine-tuning
At a minimum, researchers would like to be able to perform supervised fine-tuning of models available through
the API. More flexible fine-tuning permissions should be granted to trusted researchers with a demonstrable
need for such permissions. Clarity should be provided regarding the algorithmic details of the implemented
fine-tuning procedure, allowing researchers to make meaningful comparisons between the effects of fine-tuning
on different models. This information may not be too sensitive as it does not necessarily reveal information
about the base model, rather, only the fine-tuning performed on top of it.

• Model families
Researchers value access to model families (E.3). As such, we recommend the provision of families of models
of different sizes, and differing amounts and types of fine-tuning. This enables research that aims to identify
the mechanistic causes of model capabilities by providing the ability to compare between models that differ
only along a single dimension. This is already implemented to some extent in current commercial APIs (see

18Note that ‘information regarding a model’s size’ does not necessarily mean divulging a model’s exact parameter count. For
example, knowing the relative sizes of members of a model family may aid in the study of scaling laws, even without knowing the
absolute size of any of the models.
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Appendix A). We caution, however, that such information could encourage capabilities proliferation. Thus,
here too, tiered access may be the best solution.

It is worth noting that we have not included functionality that allows for the inspection or modification of model
internals, such as weights or activations, due to their sensitivity and the nascency of methods that make use of them.

A research API such as the above does not address other significant challenges and limitations faced by external
researchers, such as dependencies on human labour-intensive tasks or complex multi-model setups seen in alignment
research. Nor does an API providing access to pretrained models facilitate any research agenda that aims to study
pretraining methods, such as in [54].

6.2 Costs and Barriers to Providing Access

Though not the focus of this report, it is worth briefly mentioning some potential costs and barriers to providing the
forms of access considered through structured access. We group these concerns into those of safety, commercial
incentives, and legality.

Potential safety concerns include that of the proliferation of techniques for building increasingly capable dual-use
systems, leading to an acceleration in the rate of AI’s development, as discussed above. Furthermore, providing greater
access to models necessarily increases the attack surface for any actors wishing to gain illegitimate access to a model,
for example through exploiting potential vulnerabilities in the API. Such actors may then be able to apply the model to
malicious ends [3].

Model theft in this manner is clearly also a commercial concern, even absent the subsequent application to misuse. It is
worth noting that model theft does not necessarily depend on having access to the model’s weights, as the weights can
be (approximately) inferred without significant difficulty when given comprehensive access to activations. Secondly,
the financial and compute costs of providing greater access via an API may result in a strong disincentive for model
developers if not justified by benefits to the developer resulting from the increased external research and evaluation.

Finally, legal concerns may hinder the sharing of some forms of information, especially that which relates to the datasets
used in a model’s pretraining and fine-tuning.

7 Conclusion

The trend towards more closed release of frontier AI models makes it increasingly challenging for external researchers
to conduct research on them. Structured access solutions such as APIs could be one way of facilitating external research
on models, though it is not clear what functionality would be most useful to researchers if included in such a service.
We have aimed to make progress on resolving this uncertainty through taxonomising different forms of access to AI
models, analysing the forms of access that appear in existing AI safety literature, and conducting interviews with AI
researchers.

We found considerable variation in the access requirements for different areas of research, with interpretability research
requiring the most comprehensive access, and evaluations largely feasible with only the ability to repeatedly sample from
a model. We also found that insufficient access to suitable models is a substantial bottleneck for external researchers,
underlying the importance of efforts to facilitate more comprehensive access.

Based on these findings we lay out what features should be incorporated in effective ‘research APIs’, over and above
those provided in current APIs. Specifically, we recommend that research APIs: provide greater transparency regarding
model information; provide access to output logits; prioritise version stability; facilitate flexible fine-tuning of models;
and provide access to model families. We also briefly discussed the issue of balancing greater access against the
potential costs and bottlenecks of doing so, and risks of proliferating potentially dangerous AI capabilities.
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Appendix A A Catalogue of Current API Features

Table 3 shows the taxonomy with additional information regarding example publications that make use of each form of
access, as well as the availability of each form of access in currently available APIs.

Table 3: Catalogue of current API features

(A)
Sampling

(A.1) Basic sampling Sending prompts to the model, and ob-
serving output

[55, 56] ✓ OpenAI
✓ Anthropic
✓ Google

(A.2) Logits & probabil-
ities

Sending prompts to the model, and observ-
ing logits or probabilities of next tokens

[57] ✓ OpenAIb

✗ Anthropic
✗ Google

(A.3) Sampling
algorithms

Selection of various sampling algorithms
and control of relevant parameters

[58] ✓ OpenAIc

✓ Anthropicd

✓ Googlee

(B)
Fine-tuning

(B.1) Supervised Supervised fine-tuning on a custom
dataset

[59] ✓ OpenAIf

✗ Anthropicg

✗ Google

(B.2) Custom loss Fine-tuning with a user-specified loss
function

[60] ✗

(B.3) Reinforcement
learning

Fine-tuning with reinforcement learning [61] ✗

(C)
Inspecting

(C.1) Parameters Inspecting model parameters (e.g.
weights, biases, key & query matrices)

[62, 63, 64,
65, 66]

✗

(C.2) Activations &
attention

Observing activations or attention patters
for a given input

[67, 68] ✗

(C.3) Gradients Observing the gradient of loss with re-
spect to parameters for a given input

[69, 70, 71] ✗

(C.4) Embeddings &
residual stream

Inspecting embeddings at a given layer of
the network

[72] ✗ OpenAIh

✗ Anthropic
✗ Googlei

(C.5) Custom function
insertion

Performing custom computations at a
given point in a forward pass (e.g. classi-
fier probes)

[73, 74] ✗

(D)
Modifying

(D.1) Parameters Modifying model parameters (e.g.
through ablation)

[75, 31] ✗

(D.2) Activations &
attention

Modifying activations and attention
patters

[76, 31] ✗

(D.3) Embeddings &
residual stream

Modifying vector embeddings and the
residual stream

[77] ✗

(D.4) Custom function
insertion

Arbitrarily transforming model internals
at a given point in a forward pass

[78] ✗

Class Feature Description Example
Publica-
tion(s)

Current
Availabilitya

Continued on next page
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Table 3: Catalogue of current API features (Continued)

(E)
Meta

(E.1) Inspection of
training data

Inspecting the data on which the model
was trained

[79] ✗

(E.2) Training
snapshots

Access to ‘snapshots’ of the model from
different stages of training

[80] ✗

(E.3) Model families Access to collections of related models [81, 82] ✓ OpenAIj

✓ Anthropick

✗ Googlel

(E.4) Model
information

Access to information regarding e.g. the
model’s architecture, size, or training
procedure

[43] ✗

Class Feature Description Example
Publica-
tion(s)

Current
Availabilitya

a Checkmarks link to relevant documentation. Information accurate as of August 10, 2023.
b Ability to view up to the five most likely next tokens, along with associated log-probabilities.
c Choice of two sampling methods (weighted random, nucleus sampling), with basic parameter modification (sampling

temperature, top_p). Ability to modify the likelihood of specified tokens (logit_bias), and penalise repetitiveness
(frequency_penalty, presence_penalty).

d Basic parameter modification (sampling temperature, top_k, top_p).
e “The API uses combined nucleus and top-k sampling.” The user is able to specify parameters top_k and top_p for these two

methods, respectively.
f Limited to base GPT-3 models. Only limited control of specific fine-tuning hyperparameters.
g No fine-tuning access as standard though users are able to express individual interest in fine-tuning permissions.
h OpenAI API does have an ‘Embedding’ feature, but this does not function as per the description given in this table, rather it

performs embedding on user input, without generating any output.
i Similarly to OpenAI, the PaLM API has a separate model for generating embeddings, but does not provide the functionality to

view intermediate embeddings within a given model.
j For example, the ‘GPT-3 family’ contains Ada, Babbage, Curie, and Davinci model sizes.
k Currently a choice between default claude-2, claude-2.0, and the smaller claude-instant-1, and
claude-instant-1.2.

l Though the PaLM API does contain three models (text-bison-001, chat-bison-001, and embedding-gecko-001), these
are differentiated by being optimised for different use cases, with correspondingly different functionality provided in the API.
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Appendix B Literature Collection Method

When collating our database of AI safety research for the literature analysis, we manually filtered for relevance as
described in this appendix. We defined relevance negatively, whereby we excluded papers that were collected as part of
our search that fulfilled at least one of the following criteria.

• Do not concern AI;
• Are not predominantly focussed on making progress in questions relevant to ensuring the safety of AI systems;
• Primarily concerns reinforcement learning (RL) systems;
• Do not provide enough information about models used, and how;
• Are opinion pieces;
• Are predominantly philosophical in nature;
• Introduce or document software tools without application or assessment;
• Are survey papers or literature reviews;
• Are better classified as research within the social or political sciences;
• Are published as a dissertation;
• Review or summarise previously published research findings;
• Are not written in English.
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Appendix D Interview Methodology

A total of twelve interviews were held with AI researchers, selected to cover a range of seniorities, research areas, and
employers. Of these twelve, five researchers were in senior research positions, five were enrolled in a PhD program at
the time of interview, and the remaining two were junior researchers not holding, nor studying for, a PhD. In terms
of research areas, six researchers reported working on alignment, four on AI evaluations, and two on interpretability.
Finally, six researchers were employed by academic institutions, four by private AI firms, and the remaining two were
primarily affiliated to academic institutions, but at time of interview were on sabbatical at private firms.

All but one interview lasted approximately 30 minutes, with the exception lasting 15 minutes. Interviews were semi-
structured, including a number of standardised questions asked to all participants, with follow-up and clarification
questions being more flexible depending on the interviewee and their responses. The initial questions were roughly
divided into three topics: ‘research practices’, concerning the researcher’s current and previous interaction with AI
systems for their work; ‘general access requirements’, addressing their views on the access to AI systems required
across the broader research landscape; and ‘future speculations’, concerning the participants perspectives and opinions
on how access requirements may change in the coming years.

All interviews were conducted virtually, and were recorded with the participant’s consent. The study was deemed
exempt by UCLA’s institutional review board, with reference IRB#22-001928. Interviews were subsequently transcribed
in full and manually anonymised. Noteworthy quotes were then extracted from transcripts, and lightly edited for brevity
and readability. This collection of quotes was then qualitatively analysed and labelled by topic or issue addressed. The
seven themes presented and discussed in the following section are the result of this labelling.
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Appendix E Additional Interview Material

Theme 1: Availability of model access is a significant factor in determining which research projects are pursued

hdjyk: There are certainly entire projects that we might have done at the [academic] lab if we might
have had access, but [we] just settled on other projects to avoid the limitations.

43lli: If I can’t find . . . a practical way to do [fine-tuning], I basically won’t be able to do the project
[because] it really hinges on specifically asking a question about – when you teach a model . . . through
the process of fine-tuning – how does that change model behaviour? The whole question is about . . .
behaviour in response to fine-tuning.

x19sz: Yeah definitely, I think [access] has a significant impact. [For example, ] in one project we were
thinking about using feedback generated by language models to help language models themselves be
better at some tasks. And we had initial results with InstructGPT that were mediocre, but a few weeks
ago the API [for] ChatGPT became available, and that prompted us to start thinking about this project
again. A second example is that, . . . for OpenAI models you can do . . . supervised fine-tuning through
the API, but we were specifically interested in comparing supervised fine-tuning with fine-tuning using
RLHF, and you cannot do RLHF fine-tuning through the API. If you could, we would definitely be super
interested in doing that.

BB: Do you [ever] find that . . . the availability of models [afforded] to you with sufficient access is
restricting? Does it limit the research agenda that you can pursue in any way?
fiwl6: Oh yeah, absolutely, [it] absolutely limits it – and it’s a major issue!

Theme 2: Current APIs lack crucial model information

klx7y: It’s good . . . for a researcher or analyser [to know] which model it is [that they’re looking at]!
People have complained about, say, the OpenAI API, that they just swap the models [arbitrarily]. [So]
you’re doing an analysis with a bunch of people, and suddenly the model changes halfway through and
you’re not told. So I think . . . version stability is a very important aspect of this.

43lli: I think [it’s useful to know] is this a model that’s actively doing retrieval? Is it being continuously
updated based on user interactions? . . . Was it [trained with] supervised fine-tuning? Was it supervised
fine-tuning with human feedback? Or was it reinforcement learning with human feedback? It seems like
some of these definitely have practical differences in terms of their outcomes, but people can kind of
guess . . . based on the model behaviour, . . . but it would certainly be useful to . . . actually know . . . what
method the model was trained with.

43lli: Information about data [could be useful]. I’m very interested in . . . generalisation behaviour, . . . so
like, when you train a model with RLHF, how does that change the . . . behaviours that you didn’t train it
for, but it just . . . spontaneously generalises to. [For example] in the ‘model-written evaluations’ paper,19

they say that . . . there’s an increased predilection for the model to not want to be shut down. But in order
for that to be very concerning, you need to know that there wasn’t any data in the fine-tuning process that
would have encouraged that. . . . But if you don’t have the data, it’s hard to know . . . what to conclude if
you see a worrying behaviour and you’re not sure [if this is] just something from the data, or is this a
worrying generalisation?

43lli: Right now with OpenAI’s fine-tuning, it’s not clear exactly what kind of fine-tuning you’re even
doing. Presumably they’re doing some sort of parameter efficient fine-tuning, and that’s . . . probably
going to have pretty different properties than full model fine-tuning.

x19sz: It would be much more useful if OpenAI were more transparent with the training procedures. So
only two months ago I think, they published . . . a specific mapping from models described in their papers

19[61]
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to API IDs. And the fact that they published [this] was hugely helpful. Some examples of information
that is not available, but would be helpful, is if we could check . . . if a given string was in the training set
of a given model. For example, sometimes we want to evaluate a model on a given dataset, and it’s quite
important to know whether the dataset could have been . . . in the training data and memorised by the
model.

x19sz: One thing [that we don’t know] is how exactly [the fine-tuning on OpenAI’s API works]. We have
some hunches that it’s not ‘true’ fine-tuning, but something called ‘soft prompt tuning’, [where] you are
only training some small part of a model with the rest remaining fixed, [but] we have no way to tell. . . .
In one project we assumed that they [were] actually doing this ‘soft prompt tuning’ and . . . based on that
we decided to do soft prompt tuning on another model to be roughly comparable with that. But it would
be super helpful to actually have confirmation whether it is true fine-tuning or just soft prompt tuning.

ab8ct: Yeah, the ‘meta-info’ side influences the kinds of conclusions you can draw from the research,
which then upstream influences which research project you’re going to pursue. . . . We can’t do any of
the things we would normally have done [three or four] years ago, [like looking] at the training data,
[looking] at the training algorithm . . . . We just have this black box that can do something impressive,
and so we can benchmark it and that’s the end of the story.

kz03u: There [might] be some reason to think [that a] model might be safe . . . and then evaluating the
details of that case might depend on . . . knowing things about how the model was trained, [such as]
datasets, or processes, . . . or monitoring during the training process itself.

Theme 3: Basic sampling access is sufficient for some research areas

hdjyk: I think you can do a great deal, and answer important safety questions [with] pretty good
confidence, using only the ability to sample from models quite cheaply and extensively.

43lli: There’s . . . still lots of low-hanging fruit in terms of evaluating language model behaviours, just
purely in this . . . input-output format.

pxpv1: One barrier of course is: unless they’ve given you credits, it can get pretty expensive to run these
experiments with the API, especially when you want . . . results with statistical significance.

x19sz: So I think in general . . . we, as a community, are doing much more of [these] complicated
multi-step generation pipelines where we are using language models to guide language models to evaluate
language models that [output] something that other language models consume. And I think we will be
seeing much more of that in the future.

Theme 4: Access to the largest models is non-negotiable for some research agendas

hdjyk: [For the projects where we used API access,] we needed access to models with capabilities
that . . . were very clearly emerging only above a quite large scale. . . . We were studying high-level
behaviours that we just didn’t see in small models, where . . . it was quite clear that the models that we
could reasonably, straightforwardly run ourselves, in-house, on hardware we owned, would be completely
inadequate. And the best downloadable, . . . public models that could be run with much more difficulty,
potentially on cloud hardware, were maybe borderline viable, . . . but still quite significantly worse than
the frontier, in ways that would limit research.

43lli: People [have] started to talk about a lot of these language model abilities [in terms of] these
emergent abilities. And . . . there are things [that] you just simply don’t see under a certain scale, and
so you need to be using models above a certain scale to see anything at all. And then furthermore,
the difference between base models versus instruction-tuned, or RLHF-tuned models can also be a big
difference. . . . Base language models . . . can still be quite powerful, but they’re much less reliable. And
. . . there’s maybe behaviours that you only start to see with RLHF models . . . because you’re optimising
a reward function.
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x19sz: There are some model sizes where some capabilities that we are specifically interested in appear.
For example, in the line of work on generating feedback for language models to help themselves, we’ve
found that it only really works after a certain size. So . . . we couldn’t do that with [even] the biggest
models [whose weights are open-source]. So using the API was our only choice, basically.

fiwl6: [There are] different component capabilities that we’d like to understand the mechanisms [behind],
but they don’t emerge except [in] some of the big commercial models. So I’ll give an example - variable
binding: ‘Let X denote sunflowers, and let Y denote something else, and now let’s talk about X and Y’
right? ChatGPT and these super-huge models [like] GPT-4 don’t really have any trouble with variable
bindings. . . . But if you go to GPT-Neo 20B, or you go to other large [open-source] models, they’re not
so good at that. Maybe they’re OK, [but] they sort of struggle. . . . So when models are struggling to do
this it gives us pause: ‘Is it worth us understanding the mechanisms of a model, when the model can’t
actually do [the] thing that we’re investigating?’

ywx0y: A lot of the surprising behaviours that it seems most important to investigate only arise at very
large scales, and so there’s . . . nothing [that] we can investigate about them in smaller models.

pxpv1: With evaluations, you really do want to be on the bleeding edge [to] try to figure out what kinds
of behaviours might just ‘come up’.

Theme 5: Research areas differ in their reliance on knowledge of models’ underlying architecture

hdjyk: [The research regime] where we focus on API access is implicitly relying on the assumption
that [a system] looks like a typical present-day large language model, and that lets you bring in quite a
number of background assumptions about how it’s likely to fail. . . . If you’re given systems that you
know less about, . . . then I think you revert to needing full model access and . . . needing to do much
more exhaustive and more interpretability-based procedures.

pxpv1: I think the evaluations that I’ve been thinking about for the most part and the other safety
evaluations that I know of are pretty agnostic to the architecture. . . . [And this] is good and bad I guess.
. . . It’s good because . . . we don’t have to do extra work to measure these other architectures. But it’s
also bad because . . . we don’t take into account specific features of these architectures that might be . . .
really important.

evir0: I think the specific . . . way [that] we’re going about the evaluations today is quite specific to large
language models. I think it would be fine if . . . it was not a transformer, but was . . . some other thing
that was still . . . a large language model, and you could . . . get it to produce completions for you. . . . If
the black-box interface with it is similar to current large language models, then we . . . wouldn’t have to
change much at all, because we’re not interacting with the internals in any way.

Theme 6: Interpretability research requires comprehensive access to model internals

klx7y: If you’re doing interpretability then, at least at our current level of understanding, you’d need
everything. You’d need . . . full code access to the model in some complicated way. . . . In the future
maybe we can fit this stuff behind an API but it’s not true yet.

fiwl6: As soon as you get into the parameter editing of [a] model, . . . our understanding is that you’ve
got these . . . low-rank representations of memories that are stored in the parameters. . . . But in order to
test [this low-rank hypothesis], you have to be able to pass a gradient through a layer, [. . . and] there’s
different things that you’d have to do [such that] if you were to give a scientist access to these things, then
that’ exposing the weights. . . . Some things will require you to do algebra on things that are equivalent to
seeing parameters.

ab8ct: We [usually want to] do something like: look over different weight matrices and figure out which
one you should edit in order to change how the model responds to a question. Never were we looking at
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the weights and reading off the weights [though]. You could have some API where it’s like: ‘here’s the
question, and here’s the current answer, and here’s the new answer I want, and here’s the algorithm I want
you to run’ and it’s some optimisation algorithm . . . and I just want to apply this optimisation algorithm
to different components of the model. . . . this is just going to give away some information [. . . like] ‘what
are the weight matrices?’, ‘how many MLP layers are there?’, ‘how many attention layers?’. . . . It just
gives away a lot of architectural information.

Theme 7: Interpretability tools are nascent, but may become important for model evaluations

hdjyk: I’m fairly confident that no current interpretability agenda is far enough along that you would
want to use any kind of intermediate product of interpretability to make confident claims about the kinds
of questions that would be relevant for safety.

evir0: I think currently we wouldn’t know what to do with [activations], because . . . none of the
interpretability techniques are really mature enough to tell us anything useful, or be computationally
doable for the largest models.

pxpv1: I think ideally what we’d be able to do is, once we have evaluations and know what we want to
measure, we have really good interpretability tools that somehow identify traces of the behaviour. So . . .
maybe we identify a ‘truthfulness network’ or something like this, so that we can detect this in any model
that we develop in the future. So [then] we don’t have to run a million samples through the model to be
able to know . . . how truthful it is. That’s [a] pretty pie-in-the-sky idea right now - it’s totally unclear
how exactly we would do this.

x19sz: Sometimes [internals access is] not that useful, and black-box access is totally fine, but I can
imagine a lot of interesting questions . . . where access would be helpful, especially as we are thinking
about more capable models, and as we [become] more concerned about stuff like deception. So for
deception research, I think it’s much easier to do if you have . . . independent access to the internals, like,
independent of what the model says.

BB: Does there appear to you to be some . . . ‘shadows’ of standardised methodologies, [maybe some of
the methods we’ve spoken about]? Can you see them becoming standardised tools?
fiwl6: I think we’re just at the beginning of that. . . . I feel like we’re in the first 5% of the game here, and
[that] there’s going to be a lot of other experimental protocols that we’re going to have to develop in the
coming few years. . . . I think the problem [of finding these protocols and abstractions] is both harder and
has a larger payoff than most people tend to assume.

kz03u: I think that none of the internals-based methods . . . right now are at the point where . . . you’d
know what to do with a larger model.

ab8ct: [I think] we’re just gonna interact with AI systems through language, and . . . they’ll just explain
what they’re thinking to us in a way that a person would, and . . . we’ll do [the sorts of things that] we do
to verify that people can safely and successfully carry-out high-stakes tasks. We’ll just do those with
the systems, just through natural language, and we’ll meet our interpretability and explainability goals
that way. I think a complementary approach to building explanations, that is potentially a less-promising
approach is the mechanistic interpretability approach [where] the idea would be to not necessarily trust
what is said by the model, or what is output by the model, but to be able to gain lower-level, fine-grained
understanding about what the weights are doing, what the representations represent. [It would be] like
the perfect lie-detector, the perfect brain-inspector tool. I think this is an extremely, extremely ambitious
research direction. An analogy that seems fair is comparing it to neuroscience. Although neuroscience
has [made some] progress, [it has also] barely made any progress in like 30 years [when it comes to]
understanding how the brain works. So I think the mechanistic interpretability angle is complementary. I
think it’s interesting, and I’ve worked in this area recently, and will try [to] continue working in it. But, I
like where the natural language explanation and dialogue capabilities are going, and [where] I bet most
of the success [will be], and therefore . . . most of the focus in terms of evaluation and testing should just
evolve [in] that way of interfacing with the models.
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5qq0g: It feels like the majority of interpretability techniques depend on activations . . . .
BB: So do you see activations . . . as becoming the most likely focus point of interpretability techniques?
5qq0g: I mean, it already is. Will it be in the future? It’s hard to say. I feel like it depends on how good
we get at other things. But by default, yeah - all the techniques are based on activations.
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